
Empirical Software Engineering           (2023) 28:27 
https://doi.org/10.1007/s10664-022-10266-8

Using acceptance tests to predict merge conflict risk

Thaı́s Rocha1 ·Paulo Borba2

Accepted: 30 November 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Merge conflict resolution might be time-consuming and lead to defects, compromis-
ing development productivity and system quality. Developers might reduce such adverse
impacts by avoiding concurrent programming tasks that are more likely to change the same
files and cause merge conflicts. As manually predicting such risk is hard, we propose the
TAITIr tool, which approximates the set of files changed by a task (task interface) and
reports conflict risk whenever there is an intersection between task interfaces. TAITIr uses
as input the acceptance tests related to the tasks for predicting file changes, deriving test-
based task interfaces. To assess TAITIr’s conflict risk predictions, we measure precision
and recall of 6,360 task pairs from 19 Rails projects on GitHub. Our results confirm that the
intersection among task interfaces is associated with a higher probability of merge conflict
risk. A minimal intersection predicts conflict risk with 0.59 precision and 0.98 recall. We
observe that the higher the intersection size, the higher the number of files changed by both
tasks. This way, developers might use the intersection size between interfaces as a degree
of conflict risk between tasks, choosing a task to work on depending on it. We also find that
TAITIr’s predictions outperform predictions based on changed files by similar past tasks.
Our analysis derives several other results, considering variations of our notion of an inter-
face in two dimensions: parts of the test code considered for computing interfaces, kinds of
files abstracted by the interfaces.

Keywords Collaborative development · Task prioritization · Behaviour-driven
development · Prediction of conflict risk

Communicated by: Bram Adams

� Thaı́s Rocha
thais.burity@ufape.edu.br

Paulo Borba
phmb@cin.ufpe.br

1 Federal University of Agreste of Pernambuco, Garanhuns, Brazil
2 Informatics Center, Federal University of Pernambuco, Recife, Brazil

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10266-8&domain=pdf
http://orcid.org/0000-0002-6125-8254
mailto: thais.burity@ufape.edu.br
mailto: phmb@cin.ufpe.br


   27 Page 2 of 36 Empir Software Eng           (2023) 28:27 

1 Introduction

Software development is often a collaborative activity where developers share artifacts
through a repository allowing them to work on programming tasks independently. As a con-
sequence, without proper coordination, developers might often make code changes that are
inconsistent with other changes, leading to textual or syntactic merge conflicts during code
integration (Brun et al. 2013; Kasi and Sarma 2013), even when adopting advanced merge
tools (Apel et al. 2011, 2012; Cavalcanti et al. 2017; Accioly et al. 2017) that avoid spurious
conflicts reported by the state of the practice tools.

Conflict resolution might be time-consuming and lead to defects, compromising devel-
opment productivity and system quality, as such defects often end up reaching end users.
To reduce conflicts occurrence, developers adopt risky practices such as rushing to fin-
ish changes first (Grinter 1997; Sarma et al. 2012), and partial check-ins (de Souza et al.
2003). Similarly, partially motivated by the need to reduce conflicts, or at least avoid
large ones, development teams adopt techniques such as trunk-based development (Adams
and McIntosh 2016; Potvin and Levenberg 2016; Henderson 2017) and feature toggles
(Bass and Weber 2016; Adams and McIntosh 2016; Fowler 2010; Hodgson 2017a), which
support Continuous Integration (Fowler 2020) but might lead to extra code complexity
(Hodgson 2017b).

An alternative strategy to reduce textual merge conflict1 occurrence is to support devel-
opers with task context information to safely choose a task to work on by avoiding the
concurrent development of tasks that are likely to change files in common. As developers
are often unable to predict the files that a programming task will change accurately, we
have developed the TAITI (Test Analyzer for Inferring Task Interface)2 tool to automati-
cally predict that in the specific context of BDD (Behaviour-Driven Development) (Smart
2014; Zampetti et al. 2020) projects. In such a context, developers write automated accep-
tance tests before feature implementation. As TAITI’s prediction is based on the analysis of
the tests associated with a task, we say that the tool computes a test-based task interface,
which tries to approximate the actual task interface or context (the set of files changed by a
programming task).

A previous evaluation study (Rocha et al. 2019) brought evidence that test-based task
interfaces (TestI) generated by TAITI is a promising predictor of file changes. In sum, it
is 45.6% – 70.9%3 more precise than a random predictor (a predictor that indiscriminately
points to file changes), and it performs better when there is broader test coverage per task.
Also, although TestI is less precise than a predictor based on task interfaces obtained by
observing changed files by similar past tasks (TextI), it covers much more file changes,
getting a 12.77% – 20.14% higher mean recall rate. The predictions favor the recall measure,
which is more critical for our context as false negatives could lead to unexpected conflicts
(i.e., it is impossible to prevent concurrent changes on a file with no planned changes). False
positives are undesirable as well. However, they discourage but do not prevent parallel tasks
that would not conflict, as developers have decision-making power.

1The paper focuses on textual merge conflicts caused by parallel changes in a file hunk. This way, in the rest
of the text, references to merge conflicts mean textual merge conflicts.
2https://github.com/thaisabr/TestInterfaceEvaluation
3The range refers to the results related to the prediction of file changes of two samples (the smallest and the
largest, respectively) when using TestI with no filtering strategy.

https://github.com/thaisabr/TestInterfaceEvaluation


Empir Software Eng           (2023) 28:27 Page 3 of 36   27 

Although TestI shows promising results for predicting files to be changed, we have no
evidence that it might predict conflict risk and support developers to avoid conflict occur-
rence. Specifically, when dealing with predictions of file changes, we focus on individual
tasks. In case of conflict risk, we focus on task pairs (at least), and a requirement is the
predictions of file changes should apply for both tasks. As such a condition is not always
satisfied, conflict risk predictions might derive unexpected results, motivating an in-depth
investigation.

So in this paper, we go further and, by using TAITIr (TAITI risk)4 tool, an extension of
TAITI, we assess whether TestI can predict the risk of merge conflicts between two tasks
based on the intersection between their interfaces. Knowing that textual merge tools like
diff3 point out a conflict in case of parallel changes in a file hunk, we assume there is a
merge conflict risk when two tasks change common files. We predict that there is no risk of
a merge conflict if the intersection between two TestI is empty. Otherwise, we predict there
is a risk. Note that TestI does not predict changes in program elements such as fields and
methods, impairing us refining our definition of conflict risk.

To assess TestI potential, we conduct a retrospective study by collecting a sample of 990
tasks5 from 19 Ruby on Rails6 projects that use Cucumber7 for specifying acceptance tests.
Then we simulate the integration of possible concurrent pairs of tasks per project, computing
the intersection between the set of files changed by both tasks. As a result, we have a set of
6,360 task pairs, for which we evaluate precision and recall measures of conflict predictions
based on TestI. Our study derives several other results, considering variations of our notion
of an interface in two dimensions: parts of the test code considered for computing interfaces,
kinds of files abstracted by the interfaces.

In this sense, the novelty of this paper is the evaluation study concerning predicting
conflict risk between tasks pairs based on TestI. TAITI computes TestI. TAITIr extends
TAITI to evaluate conflict risk based on the intersection between two TestI interfaces. We
developed both tools as scripts and used them in the context of an evaluation study. Because
we conduct two studies, we opt to separate these tools conceptually. But considering that
TestI is useless without predicting conflict risk, TAITIr is the tool developers will use.

Our results reveal that, in our sample, a minimal intersection between TestI (1 file)
predicts conflict risk with 0.59 precision and 0.98 recall. In other words, the intersection
between test-based task interfaces denotes higher chances of tasks changing files in com-
mon. Again, the predictions favor the recall measure, which is more critical for our context,
as explained. We also find evidence that the larger the intersection size between two inter-
faces, the higher the number of files changed in common by the tasks associated with
these interfaces. This way, developers might use the intersection size between TestI as a
degree of conflict risk between tasks. Thus, they might prioritize parallel execution of tasks
that are likely to change fewer files in common whenever other factors (time and resource
constraints, stakeholders priority, task complexity, developer skills, etc.) allow.

4https://github.com/thaisabr/TAITIr
5A programming task is an activity performed by a developer that results in code creation or edition, such
as developing a new feature, bug fix, or refactoring. Considering the usage of a repository to integrate code
contributions, we extracted tasks from merge scenarios in this study. From a merge scenario, we determine a
triple formed by left and right commits to be merged, and a base commit that is a common ancestor to left and
right. This way, a task is a set of all reachable commits between the left/right commit and the base commit.
6https://rubyonrails.org/
7https://cucumber.io/

https://github.com/thaisabr/TAITIr
https://rubyonrails.org/
https://cucumber.io/


   27 Page 4 of 36 Empir Software Eng           (2023) 28:27 

Although the intersection between TestI might predict potentially conflicting task pairs,
we also observe that it cannot predict the potentially conflicting files in many cases. In such
cases, the intersection between TestI might reflect a degree of dependence between the parts
of the code changed by both tasks, eventually leading to semantic conflicts, even in files not
directly reached by the interfaces.

In addition, we also observe that even though TestI only contains Ruby and HTML files,
risk predictions are better when we compare them with the risk result by considering all
kinds of files changed by the tasks. Such a phenomenon reinforces the previous observation.
Alternatively, we find that we can improve predictions by discarding test preconditions
when computing TestI interfaces as a strategy to reduce false positives. However, as the test
coding style varies between projects, such a strategy does not universally benefit all of them.

Finally, to better assess the performance of our predictor based on TestI, we compared
it with a predictor based on TextI. Similar to when dealing with file changes prediction, we
find that a TextI-based predictor is more precise than a TestI-based one. Still, its low recall
rate discourages its usage. So we conclude that, for our context, TestI has overall better
performance.

The rest of the paper is organized as follows. Section 2 illustrates how developers
could use TestI to evaluate the risk of a merge conflict between programming tasks and
briefly presents TAITI, the tool for inferring TestI, and TAITIr, the tool for assessing con-
flict risk between tasks based on their TestI. Section 3 presents our research questions
and Section 4 provides information about our task sample. Section 5 presents the obtained
results. Section 6 discusses the implications of our results. Section 7 points out the threats to
the validity. Section 8 presents related work. Finally, Section 9 brings final considerations.
All data, tools, and complementary scripts used in the empirical study are available in our
online Appendix (Rocha and Borba 2019).

2 Motivating Example

To illustrate how test-based task interfaces might help developers to avoid conflicts, let us
see a simplified example of a merge conflict from project allourideas/ allourideas.org.8 The
project is a web system for collecting and prioritizing ideas through a kind of collaborative
survey. Andrew concludes task T175, which consists of a set of refactorings to improve code
quality (commits e3cc71, 58195, 6847c, 18ff5, f1b0d, and f8e9f). One day later,
Becca concludes task T176, which fixes a set of bugs and enhances the GUI layout (com-
mits 5a6e4, ae40e, 6f349, and 2a33a). When Becca integrates her contributions, the
conflicts illustrated in Figs. 1 and 2 are reported. The first conflict (Fig. 1) occurs because
task T175 removes a set of code comments whereas task T176 includes a method declaration
just above the code comments, both affecting the same area of the file. The second conflict
(Fig. 2) occurs because both tasks change, in the same area of another file, the body of the
results method.

Andrew and Becca could avoid these conflicts by opting not to perform these tasks in
parallel if they could predict the files they would have to change when working on their

8The project is part of our sample, but task T175 is not because it does not satisfy the selection criteria
explained in Section 4 related to TextI. In sum, there are no older tasks than T175 in the sample from project
allourideas/allourideas.org, resulting in an empty TextI. We present the example by using fictitious develop-
ers. We found the conflict occurrence by merging the tasks, given they were extracted from the same merge
scenario — the same base and merge commits.



Empir Software Eng           (2023) 28:27 Page 5 of 36   27 

Fig. 1 Merge conflict in a model file caused by the integration of tasks T175 and T176. Due to space
constraints, we omitted parts of the code

tasks, whenever other factors allow. In the case of refactorings like Andrew’s task, when a
specific set of files has been perceived as problematic and is expected to be refactored, file
change predictions could be more realistic. However, as in Becca’s task, file change pre-
dictions related to bug fixes are less realistic and would demand strong developer expertise
and experience with the system and the features. When the developer is responsible for fix-
ing a recent bug introduced by himself, he might quickly point out the set of files related



   27 Page 6 of 36 Empir Software Eng           (2023) 28:27 

Fig. 2 Merge conflict in a controller file caused by the integration of tasks T175 and T176. Due to space
constraints, we omitted parts of the code

to the bug, making file change prediction a simple task. But in the case of an old bug or a
bug introduced by a teammate, a bug fix might be challenging and require not obvious code
changes. The same applies to predictions related to the development of new system features.



Empir Software Eng           (2023) 28:27 Page 7 of 36   27 

Fig. 3 Example of a Cucumber test related to task T176

Instead of relying on such developer prediction capacity, we consider automatic test-based
prediction in the particular context of BDD, where automated acceptance tests are written
before implementing features, and each feature is associated with test scenarios. The idea is
to use the TAITI tool to systematically analyze the code of acceptance tests associated with
a task and infer the application code that could be exercised by the tests, approximating the
files that the task would change.

By inspecting the Cucumber tests related to each discussed task, TAITI recursively
searches for references to programming elements (such as fields and methods) and links to
web pages, yielding the file sets (test-based task interfaces) that developers might use as pre-
dictions of file changes. To better explain, let us consider the Cucumber test related to task
T176 in Fig. 3.9 TAITI receives as input the first part of the test (Fig. 3a), which is a high-
level usage scenario written in Gherkin with test setup steps (Given), test actions (When),
and expected results (Then). There are other keywords, such as And, which makes the sce-
nario read more fluidly by avoiding a repetitive sequence of steps. From such a scenario,
relying on regular expressions, TAITI reaches the second part of the test (Fig. 3b), which is
Ruby code that automates the scenario steps. As a matter of brevity, we only partially illus-
trate the step definition that automates the second step of the scenario. Next, by inspecting
such a step definition, TAITI finds the usage of the class Choice and the instance variable
@question (both marked in red), among other programming elements, mapping them to
the files app/models/choice.rb and app/models/question.rb, respectively.

9As a matter of clarity, we slightly simplify the Cucumber test, and we omit some parts of it that are not
relevant to our explanation.



   27 Page 8 of 36 Empir Software Eng           (2023) 28:27 

Fig. 4 Test-based task interface of T175. The files in red are in the intersection between interfaces TestI(T175)

and TestI(T176), and the underlined files are the conflicting ones

The inspection of all Cucumber tests related to tasks T175 and T176 yields the file sets
in Figs. 4 and 5. We can then observe that TestI(T176) is a subset of TestI(T175). The seven
files marked in red are at the intersection of the two interfaces and are more vulnerable
to conflicts when developers integrate their contributions. Indeed, the two conflicting files
previously presented in Figs. 1 and 2 are in such intersection.

Thus, assuming that Andrew and Becca have developed the Cucumber tests before the
application code, according to BDD’s dynamics, they could avoid the conflicts by using
TAITIr, an extended version of TAITI that evaluates conflict risk between a task pair based
on TestI. By observing the warning of conflict risk revealed by the non-empty intersection
between TestI(T175) and TestI(T176), Becca could choose another task to perform. For exam-
ple, she could select a task with a TestI that does not intersect with TestI(T175), or at least

Fig. 5 Test-based task interface of T176. The files in red are in the intersection between interfaces TestI(T175)

and TestI(T176), and the underlined files are the conflicting ones



Empir Software Eng           (2023) 28:27 Page 9 of 36   27 

one having a smaller intersection size, suggesting a low conflict risk. Intuitively, if TestI pre-
dicts the files a task will change, the larger the intersection between two TestI, the higher the
conflict risk between the tasks related to these TestI. The reason is developers will change
more files in common, increasing the chance that parallel changes affect the same file hunk.

By relying on static analysis, TAITI cannot accurately identify the files executed by the
tests, even though its predictions of file changes seem promising, as detailed by Rocha et al.
(2019). Also, files in TestI might not require changes because developers might have imple-
mented part of the functionality before, as expected for refactoring and bug fix. For example,
TestI(T175) has 21 files, and only 4 were actually changed by T175 (commits 58195d,
18ff59, f8e9f6, and f1b0da). Consequently, the tasks might not change all files in the
intersection between TestI. In the presented case, the intersection of their TestI has seven
files, but only two have changed (by commits 58195d, 18ff59, f8e9f6, and f1b0da,
which are related to T175, and by commit 6f349c related to task T176), and both files have
a conflict. Finally, the tests might not sufficiently cover the tasks, preventing relevant files
into TestI. For instance, both tasks changed the file app/controllers/choices controller.rb
without conflict, and such a file is not part of the intersection between TestI. All these pos-
sibilities motivate us to go deeper and investigate the viability to use TestI as a predictor
of conflict risk between programming tasks and better understand how we can improve our
whole strategy and TAITI.

Note that our simplified example abstracts other criteria developers usually evaluate
when prioritizing programming tasks. Most of the time, the business value defined by stake-
holders is the main criteria. Other influence factors are time and resource constraints, task
complexity, and developer skills. Therefore, in a realistic context, merge conflict risk might
support developers in case of an impasse among tasks. In other circumstances, the upfront
knowledge about conflict risk might not change task prioritization. Still, it might guide the
team to improve test planning and communication strategy to reduce possible side effects
caused by conflicts. In addition, our example demonstrates a successful prediction of con-
flict risk even though task T175 is a refactoring. Considering that in the case of refactorings,
the task’s changeset might not include all relevant tests for it, the input for TAITIr might be
incomplete, compromising predictions of conflict risk.

3 Research Questions

We conducted a retrospective study to answer a few research questions to evaluate whether
TestI helps predict the risk of merge conflicts when integrating the code produced by two
programming tasks.

First, given that TestI approximates the set of files changed by a programming task, we
investigate whether the intersection between TestI interfaces could predict conflict risk. So,
we ask the following question.

3.1 Research Question 1 (RQ1): Are Tasks with Non-Disjoint TestI Interfaces
Associated with Higher Merge Conflict Risk?

To answer this question, we collect pairs of tasks that could be integrated (merged). Given
that the state-of-the-practice often preconizes short sprints (between 1 and 4 weeks dura-
tion), we select tasks concluded with no more than 30 days of difference. We extract tasks
from merge scenarios. For each merge commit, we determine the triple formed by left and
right commits to be merged and a base commit, which is a common ancestor to left and right.



   27 Page 10 of 36 Empir Software Eng           (2023) 28:27 

This way, a task is a set of all reachable commits between the left/right commit and the base
commit. Using a logistic regression model, we assess the association between two binary
variables related to task pairs: conflict risk and non-disjoint TestI. Conflict risk is the depen-
dent variable that worthes true whenever the intersection between the set of changed files
by the tasks is not empty. The non-disjoint TestI is the independent variable that worthes
false whenever the TestI for tasks are disjoint. We use TAITIr to compute TestI.

Although the answer to RQ1 allows us to observe whether the intersection between TestI
relates to merge conflict risk, it does not allow us to assess how often the predictions of
conflict risk apply. So, we ask the following question to evaluate the accuracy of TestI as a
predictor of conflict risk between programming tasks.

3.2 Research Question 2 (RQ2): HowOften Does TestI Predict Conflict Risk Between
Two Tasks?

For answering this question, we evaluate precision and recall measures for predictions based
on TestI. In this context, precision is the proportion of predictions that genuinely applies.
In other words, it is the ratio between the number of task pairs in which both the tasks’
changed files sets and the tasks’ test interfaces intersect (true positives), and the number of
task pairs in which their TestI intersect (true positives plus false positives). The recall is the
proportion of conflict risk that TestI predicts. That is, the ratio between the true positives
and the number of pairs whose tasks’ changed files sets intersect (true positives plus false
negatives).

In the context of conflict risk, recall might be more relevant than precision. A lower recall
implies unexpected conflicts might often be observed, and the development team might not
be prepared to deal with them. In contrast, a lower precision discourages (but not prevents)
parallel execution of tasks that would not conflict, meaning the team would unnecessarily
delay work on a task. Although it is undesirable, from the developer’s perspective, a false
alert of conflict risk does not require extra effort, contrasting with other tools based on static
analysis. This way, developers might ignore conflict alerts when necessary. As discussed in
Section 2, the teams usually evaluate other criteria when prioritizing programming tasks,
such as the business value defined by stakeholders. Complementarily, we evaluate F2 (Berry
2017), a variation of F-measure that weights recall higher than precision.

Next, if there is conflict risk between many remaining tasks in a backlog and the tasks
under development, it would be helpful to provide developers with criteria for comparing
conflict risks so that they could choose a less risky new task to work on. So, we ask the
following question.

3.3 Research Question 3 (RQ3): Is the Intersection Size Between Two TestI
Interfaces Proportional to the Number of Files Changed in Common
by the Corresponding Tasks?

To answer RQ3, we investigate whether there is a correlation between the number of files
simultaneously changed by both tasks and the size of the intersection between their TestI
interfaces. A positive answer suggests that it is possible to reduce conflict risk by choosing
or allocating tasks that minimize TestI intersection.

The questions so far assess the potential of TestI for predicting conflict risk between
tasks. But to better assess TestI potential, we compare it with TextI, a predictor based on
task interfaces obtained by observing files changed by past tasks with similar descriptions
(a textual explanation about the task meaning). We design TextI based on Hipikat (Cubranic



Empir Software Eng           (2023) 28:27 Page 11 of 36   27 

et al. 2005), a tool that investigates project history to predict artifacts related to a task. A
previous evaluation study (Rocha et al. 2019) shows that TextI is more precise than TestI
when predicting the set of files changed by a given task, even though it presents a signif-
icantly lower recall rate. Thus, according to the following question, we further investigate
such interfaces by comparing their ability to predict merge conflict risk.

3.4 Research Question 4 (RQ4): Is TestI a More Correct and Complete Predictor
of Conflict Risk than TextI?

We answer that by checking whether TestI has better precision, recall, and F2 measures than
TextI. But we first assess whether TextI intersection relates to merge conflict risk, using a
logistic regression model as RQ1. As previously explained, the dependent variable is con-
flict risk, and it worthes true whenever the intersection between the set of changed files by
the tasks in a pair is not empty. But this time, the independent variable is non-disjoint TextI,
which worthes false whenever the TextI for tasks are disjoint.

The TextI of a task t is the intersection between the three sets of files changed by the
three past tasks with the most similar textual description to t. We assume the textual descrip-
tion of a task is the text of its Cucumber scenarios written in Gherkin with no automation
code. Given a task relates to a commit set, the conclusion date of a task is the date of its
last commit, and a past task of t is a task whose conclusion date is earlier than t’s conclu-
sion date. We compute the similarity between Cucumber scenarios as the cosine similarity
between vectors of TF-IDF values (Salton and McGill 1986), as it is a simple, solid, and
extensively used approach. In addition, we found that a relevant similar study (Thompson
and Murphy 2014) used it. Such a study investigates a strategy to recommend a start point
for a programming task that relies on the similarity between task descriptions and the over-
lap of considered and changed resources associated with the similar tasks as the basis for
recommendations. As part of the process of computing similarity, with the aim of clean
task descriptions, we preprocess the Cucumber scenarios by tokenizing the text based on
spaces and punctuation, stemming it, and eliminating English and Gherkin keywords, such
as Given, When and Then.

Besides studying the relation of TestI intersection with conflict risk, we explored whether
TestI similarity relates to higher conflict risk, wondering if it might be an alternative
predictor. So, we ask the following question.

3.5 Research Question 5 (RQ5): Does a Predictor Based on TestI Intersection
Outperform a Predictor Based on TestI Similarity?

Given that TestI is a set of files, to answer RQ5, we compute TestI similarity using the
cosine similarity between vectors of TF-IDF values (Salton and McGill 1986), reusing the
approach explained in RQ4 in a more simple context, as TestI is a set of filenames. The
similarity is in the scale [0,1], zero meaning no similarity and one, maximum similarity.
Then, we assess and compare precision, recall, and F2 measures for predictions based on
TestI intersection and TestI similarity.

Finally, according to Rocha et al. (2019), when dealing with an MVC-like application
(e.g., web applications developed in Rails), TestI performs better when predicting changes in
controller files. In addition, when a controller appears in TestI, the task quite often changes
at least one file from the associated slice. As controllers uniquely identify an MVC slice
(related model, view, controller, and auxiliary files), one could also use TestI to predict
slices changes. Therefore, it would be interesting to investigate whether controllers in the



   27 Page 12 of 36 Empir Software Eng           (2023) 28:27 

intersection of two TestI point out a higher chance of merge conflict risk in the related slices.
So, we ask the last question.

3.6 Research Question 6 (RQ6): Are Tasks with Non-Disjoint TestI Interfaces
Associated with Higher Merge Conflict Risk in MVC Slices?

For each task pair in our sample, we use TAITI to compute TestI for both tasks and check
whether the interfaces have some controller file in common. In case it contains, we check
if the tasks’ changed files set intersects with any file from the MVC slice identified by the
common controller. We developed a script for classifying files into MVC slices based on
the folder structure of a Rails project, which organizes system files into a folder named
app organized into subfolders such as models, views, and controllers. As when
answering RQ1, we use a logistic regression model for assessing the association between
two binary variables. The dependent variable tells whether there is any controller file in the
intersection between TestI. The independent variable informs whether both tasks change the
slice identified by the intersected controllers in TestI.

4 Study Setup

For answering the presented research questions, we analyze several task pairs. In this
section, we describe how we construct our task pair sample and collect data.

4.1 Initial Project Selection

Given that TAITIr is specific for Rails projects that use Cucumber for specifying accep-
tance tests, we use a script10 to mine GitHub repositories looking for projects that satisfy
these requirements. The script queries Ruby projects using the GitHub API through a Java
library (Eclipse EGit GitHub API Core). Next, it downloads the latest version of each project
and checks whether the project uses libraries related to Rails and Cucumber, based on the
gemfile (a Ruby file that lists all project dependencies) content. We restrict the search by
avoiding projects created earlier than 2010,11 as Cucumber and BDD were less popular
before that, and TAITIr might not be compatible with older versions of Ruby and Rails.

Hoping to find a significant number of relevant projects, we perform the search in two
independent steps, changing the strategy for sorting results, as the GitHub API provides
up to 1,000 values per search. First, aiming to find the most active projects and avoid toy
projects, we sort results by the date of the last commit on any branch in the repositories
(the definition of “last update” by GitHub API), finding 877 Ruby projects. Second, to find
popular projects, we limit the project’s number of stars, starting with 15,000 and going
down to 50, and sorted results by descending order of stars numbers. This time, we find
6,404 Ruby projects. In addition, aiming to find projects with a significant test dataset, we

10Available in our online Appendix (Rocha and Borba 2019).
11When searching for GitHub projects, we avoided projects created earlier than 2010. But we also selected
projects referenced by the Cucumber’s site, which includes projects created before 2010. Also, the creation
date refers to the date a repository was created on GitHub, which does not necessarily reflect the date of
the first commit. The project might have been first created in another code hosting platform and moved to
GitHub.



Empir Software Eng           (2023) 28:27 Page 13 of 36   27 

Fig. 6 Searching Rails projects that use Cucumber

investigate the Ruby projects referenced by Cucumber’s site,12 finding 26 projects. Figure 6
summarizes the whole searching process. In the end, we find 6,091 Ruby projects (excluding
intersections among partial results). From these, we find 1,164 Rails projects, but only 80
projects use Cucumber. Finally, we discard one project because it is a fork of another project
in the sample, resulting in 79 projects.

4.2 Task Extraction and Further Project Selection

From the 79 selected projects, we try to extract tasks with associated Cucumber tests. We
consider a task consists of the commit set between a merge commit and the common ances-
tor13 with the other commit the merge integrates. This way, we clone each project and
search for merge commits performed until June 2019, excluding fast-forwarding merges, as
it cannot cause conflicts. From each merge commit, we try to extract two tasks (which we
call merge tasks), one derived from each parent of the merge commit. To illustrate, let us
consider the merge scenario Fig. 7 presents. We can extract two tasks from base to merge,
passing throw left (commit C3) and right (commit C5). The first task is the commits set {C1,
C2, C3} and the second task is the commits set {C4, C5}.

During such a process, it is possible to find tasks that contain intermediate merges.
When it happens, for constructing a more independent sample, we only collect the com-
mits between the merge and the intermediate merge. Intermediate merges derived extensive
tasks (large sets of commits and changed files) that lack cohesion and do not align with
BDD tasks. Consequently, TestI intersects with many others, increasing false positives in
the results concerning the prediction of conflict risk.

For instance, imagine that C2 in Fig. 7 is a merge commit, as Fig. 8 illustrates. For
simplicity, Fig. 8 omits detailed information related to the intermediate merge, such as the
base commit and the commit set between left/right and base. This time, Task 1 is the unitary
set {C3}. We show a straightforward merge scenario, but many projects have a complex
history that contains nested merges. In this sense, we do not always extract two tasks from

12https://cucumber.io/docs/community/projects-using-cucumber
13For simplicity, we assume a single most recent common ancestor. With so-called criss-cross merge
situations in Git, there could be more than one.

https://cucumber.io/docs/community/projects-using-cucumber


   27 Page 14 of 36 Empir Software Eng           (2023) 28:27 

Fig. 7 Task extraction from a merge scenario

a merge commit. Also, we discard merges from which we cannot extract any task, which
happens when there are successive merge commits.

Next, we discard tasks that do not contribute with (the associated commits do not change)
both application code and Cucumber tests, as we cannot compute TestI and TextI for them.
This way, we assume that the created or updated tests during a task execution relate to the
task. We call the resultant task set as candidate tasks. Then, we discard redundant tasks
that accumulate the contributions of previously concluded tasks. Specifically, tasks whose
commit set is a subset of other tasks. Now we get a task set we call as independent tasks.

Finally, given we need task pairs to answer the research questions, we filter out projects
with less than two tasks. After task extraction, we remain with 40 projects that have at least
two tasks that satisfy our requirements and a set of 4,222 tasks. Among the 39 discarded
projects, 11 projects do not have tasks extracted from merge commits: 5 projects only have
fast-forwarding merges, and 6 projects have no merge commits. All projects with no merge
commits have at least one not merged branch, two projects do not use pull requests, and the
other 4 projects have open or closed pull requests. So, possibly there are no integrations in
these projects, even by Git rebase. Also, 24 projects do not have tasks that contribute with
application code and Cucumber tests (there are no tests related to the task, or they were
added to the project by different merge commits). Finally, four projects have less than two
eligible tasks.

4.3 Collecting Task Data and Further Project Selection

Finally, we collect the set of changed files, the TestI, and the TextI of each task. The set
of files changed by a task is the union of the files modified by its commits, and that exists

Fig. 8 Task extraction from a merge scenario containing an intermediate merge commit



Empir Software Eng           (2023) 28:27 Page 15 of 36   27 

when the task was concluded (date of its most recent commit). Verifying files’ existence is
necessary to avoid inconsistencies, such as a task that removes a file that another task con-
currently modifies back to the project. We do not evaluate the occurrence of commits that
revert changes of other commits. In such cases, we simply add the changed file into the set
of files modified by a task. We use TAITI for computing TestI (as described in Section 2).
As part of this process, TAITI collects the tests associated with each task by further ana-
lyzing the task commits using a syntactic differencing strategy for Cucumber tests. TAITI
compares each commit with its parent, identifying changed Cucumber scenarios and step
definitions; each changed scenario or step is considered to be a test associated with the
task. For avoiding inconsistencies, such as when a commit deletes a Cucumber test created
by a previous commit, TAITI consolidates the result by selecting the last version of the
Cucumber test (i.e., the version from the most recent commit).

As we need to compute TestI and these rely on valid test description and code, we discard
the following: tasks with no associated Cucumber test; tasks with partially implemented
tests (some unimplemented step definitions); and tasks with step definitions that TAITI
cannot parse. We also discard tasks whose TestI is empty, as this is often associated with
TAITI limitations or limited test coverage of the tests related to the task, obtaining a set of
relevant tasks.

As we need task pairs to answer the research questions, we filter out projects with less
than two relevant tasks. As a result, we get a sample of 1,762 tasks from 27 projects, which
represents 41.7% of the tasks extracted from the initial set of 4,222 tasks. Among the exclu-
sion criteria we adopted, the last one, the ability to successfully compute a non-empty TestI,
is the most restrictive.

Additionally, for answering RQ4, we try to compute a non-empty TextI for the 1,762
relevant tasks. Given TextI depends on project history, we discard 36 tasks for which we
cannot find three similar past tasks14 (as explained in Section 3.4). We also discard 665
tasks with empty TextI interfaces. An empty TextI means there is no intersection between
the changed files sets of their three most similar past tasks. We also filter out projects with
less than two tasks with non-empty TextI, getting a preliminary sample of 1,057 tasks from
22 projects after computing TextI. In summary, we exclude tasks with empty TestI or empty
TextI because we focus on understanding the cases where both interfaces seem to work,
hoping to conduct a fair evaluation.

At last, we simulate the integration (merge) of likely concurrent tasks, computing the
intersection between the set of files changed by both tasks. We compute all task pairs per
project by grouping tasks concluded with no more than 30 days of difference. This way,
we group tasks extracted from different merge commits. We adopt such an approximation
rather than merging tasks to check conflict occurrence to increase our sample, given we
could only faithfully reproduce a few merges because most task pairs are not extracted from
the same base and merge commit. In addition, we collected a few effectively concurrent
tasks (based on commits’ date) that satisfy our inclusion and exclusion criteria. We filter out
projects with no task pair (3 projects). In the end, we get a final sample of 990 tasks from
19 Rails projects and a set of 6,360 task pairs. Figure 9 summarizes the whole process for
constructing our dataset explained so far.

14Note that every project has at least the oldest task, for which there are no similar past tasks.



   27 Page 16 of 36 Empir Software Eng           (2023) 28:27 

Fig. 9 Process for constructing our dataset

4.4 Task pair sample

Table 1 summarizes the steps for constructing our task sample and the corresponding task
numbers for the final project set. Note that it organizes tasks in named groups to distinguish
them according to the selection step. Still, the primary definition of a task as a set of commits
between the base and left/right commits of a merge scenario does not change. As explained
in the previous sections, we collect tasks extracted from merge commits that do not contain
intermediate merges (Merge tasks). Next, we select tasks that contribute to both application
code and Cucumber tests (Candidate tasks) and tasks that are not a subtask of other tasks,
i.e., tasks whose commit set is not a subset of other tasks (Independent tasks). We compute
TestI for all independent tasks and select tasks for which we can successfully compute a non-
empty TestI (Relevant tasks). Similarly, we compute TextI for all relevant tasks and select
the ones that have a non-empty TextI. At last, we select tasks that have at least one other task
that is less than 30 days apart, which we classify as possible concurrent tasks (Concurrent
tasks). Finally, we derive a number of task pairs or integrations (Pairs) per project. This
way, the number of pairs varies among projects. For example, project diaspora/diaspora has
92 concurrent tasks and 296 pairs, whereas project rapidftr/RapidFTR has 112 concurrent
tasks and 592 pairs. Such a difference relates to the time interval between tasks. The second
project has more likely concurrent tasks than the first.

Although the overall process for constructing the task sample is similar to the one from
our previous evaluation study, their selection and exclusion criteria are different, resulting
in distinct task sets that have only one task in common.

While constructing our task sample, we do not systematically target representativeness
and diversity (Nagappan et al. 2013). Even so, we observe some variety concerning the
attributes in Table 2. Note that we collected these attributes from the project perspective



Empir Software Eng           (2023) 28:27 Page 17 of 36   27 

Table 1 Construction of our task pair sample

Repository Name #Tasks

Merge Candidate Independent Relevant TextI Concurrent Pairs

allourideas.org 188 30 30 26 21 13 41

e-petitions 446 136 136 99 71 64 1,140

whitehall 4,525 368 365 291 161 157 781

bsmi 254 52 51 9 3 3 3

enroll 6,079 202 188 29 20 20 82

diaspora 4,347 284 274 161 100 92 296

action-center-platform 247 32 32 25 18 17 38

gitlabhq 29,147 504 500 6 5 5 10

wontomedia 63 10 8 7 2 2 1

jekyll 2,403 135 134 88 64 55 88

Claim-for-Crown-Court-Defence 2,164 301 298 214 161 160 2,294

one-click-orgs 336 39 32 31 28 20 46

opengovernment 632 3 3 3 2 2 1

openproject 9,565 418 409 25 10 9 12

otwarchive 2,625 496 483 365 141 138 495

RapidFTR 1,280 203 198 149 112 112 592

quantified 233 19 18 9 5 4 2

sequencescape 2,221 436 411 13 6 6 7

sharetribe 3,034 330 322 183 121 111 431

TOTAL 69,789 3,998 3,892 1,733 1,051 990 6,360

in October 2019,15 but these might not apply during the time the developers concluded
the tasks of our sample. The project gleneivey/wontomedia has three collaborators. Still, it
does not seem like a toy system, i.e., a system with no practical usage that someone creates
for study purposes. Also, the most recent version of two projects has no Cucumber tests,
implying they gave up using Cucumber. This fact does not compromise our results because
the projects used Cucumber when the extracted tasks were concluded. All data related to
our sample is available in the online Appendix (Rocha and Borba 2019).

5 Results

In this section, we present the results of our retrospective study based on the development
history of a set of completed tasks, following the structure defined by our research questions.
Our Appendix (Rocha and Borba 2019) provides detailed information.

15We first search for merge commits performed until June 2019. Only when we consolidate our task pair
sample, we collect detailed information about the selected projects.



   27 Page 18 of 36 Empir Software Eng           (2023) 28:27 

Table 2 Diversity of projects in our task pair sample

Repository Name Description #Stars #LOC #Tests #Commits #Authors #Forks

allourideas.org A tool for groups to collect
and priorize information.

134 56,884 126 2,372 20 44

e-petitions The UK Government’s
petitions service.

251 93,447 257 2,692 47 63

whitehall A content management app
for the UK Government.

549 217,235 263 23,435 336 180

bsmi The website of an educa-
tional program of Berkeley
University.

3 245,862 49 944 11 0

enroll An enrollment system for
health benefit exchanges.

20 2,292,391 231 49,693 196 33

diaspora A privacy-aware, distributed,
open source social network.

12,296 195,654 277 19,915 585 2,911

action-center-
platform

A tool for creating targeted
campaigns where users sign
petitions, contact legislators,
and engage on social media.

168 31,509 48 2,205 29 41

gitlabhq A DevOps platform. 22,020 2,346,933 0 149,603 3,282 5,598

wontomedia A web app for community
creation of an information
classification scheme.

5 76,106 89 694 3 0

jekyll A simple, blog-aware, static
site generator.

38,807 59,733 259 11,093 1,063 8,476

Defence A web app of the UK Min-
istry of Justice.

8 211,081 46 8,333 59 1

one-click-orgs A platform for creating a
legal structure and get a sys-
tem for group decisions.

42 46,689 206 2,496 25 12

opengovernment An app for presenting US
open government data.

213 134,313 11 2,239 21 157

openproject A project management system. 3,259 742,225 0 53,437 264 1,009

otwarchive An app for hosting archives
of fanworks.

447 294,635 1,235 14,361 164 229

RapidFTR An app for sharing info about
children in emergencies.

287 98,820 274 4,939 252 332

quantified A time tracking system. 47 61,532 75 1,090 7 8

sequencescape A cloud based and extensible
LIMS system.

48 40,005 461 10,515 48 24

sharetribe A platform to create peer-to-
peer marketplaces.

1,813 415,784 279 20,655 107 1,101

5.1 RQ1: Are Tasks with Non-Disjoint TestI Interfaces Associated with Higher Merge
Conflict Risk?

5.1.1 Tasks with Non-Disjoint TestI Interfaces More Likely Modify Files in Common

Tasks with non-disjoint TestI interfaces are 2.07 times (the odds ratio of the logistic
regression, as explained in Section 3.1-RQ1) more likely to change at least one file in



Empir Software Eng           (2023) 28:27 Page 19 of 36   27 

common. This finding corroborates the idea of using TestI to assess conflict risk between
programming tasks in the context of BDD projects, as explained in Section 2.

5.1.2 Tasks with Non-Disjoint TestI Interfaces are More Strongly Associated with
Concurrent Modifications to Ruby and HTML Files

TestI only contains a few specific application files, i.e., Ruby files, .html files, and its vari-
ants, such as .haml and .erb files, which are the main files used or accessed by Cucumber
tests. For such reason, we also investigate whether TestI performs better when predicting
merge conflict risk exclusively in files reachable from TestI. So, we repeat the same kind
of analysis as before. Still, we filter the tasks’ changeset by excluding configuration files,
test files, and files in other programming languages such as JavaScript.16 This time, we find
that when the TestI interfaces of two tasks intersect, the tasks are 2.95 times more likely
to change a common file reachable by TestI. As expected, we obtain a higher odds ratio
by reducing false negatives because the restricted set of changed files more likely relates
to the task purpose, which is better predicted by TestI. For example, we have disjoint TestI
pairs when two tasks only make parallel changes in a configuration file, which plays a more
general-purpose in the project, given configuration files are not part of TestI.

In summary, we observe that tasks with non-disjoint TestI interfaces are associated with
higher merge conflict risk, especially conflict risk in Ruby and HTML files.17

5.2 RQ2: HowOften Does TestI Predict Conflict Risk Between Two Tasks?

5.2.1 A Minimal Intersection Between TestI Interfaces is the Best Predictor of Conflict
Risk Between Tasks

For answering RQ2, we evaluate precision, recall, and F2 measures for predictions based
on TestI intersection for 6,360 task pairs. To explore how TestI intersection size affects
prediction accuracy, we consider five predictors, varying the minimum intersection size
from 1 to 5. That is, we predict conflict risk between a given task pair when the size of the
intersection between their TestI is at least n, ranging from 1 to 5.

As Table 3 summarizes, we find that a minimal TestI intersection (1 file) is the best pre-
dictor of conflict risk, as it has the best values of recall and F2. We can also observe that there
is a subtle variation18 in precision when we change the value of the minimal intersection
size. When we increase the value of the minimal intersection, the false-negative numbers
also increase, whereas both the true positives (TPs) and the false positives (FPs) might
decrease. The final balance impacts more recall than precision because the first depends on
TP and FN (false negative, which inversely vary according to different rates), while the sec-
ond depends on TP and FP (which decrease). For example, when the minimum intersection
size is 4, there are 3,106 TPs, 1,912 FPs, and 606 FNs. When the minimum intersection size
is 5, there are 2,855 TPs, 1,665 FPs, and 857 FNs.

We observe that recall outperforms precision in the overall result with a significant
advantage. By considering a reduced minimal intersection size as one file, we find the
intersection between TestI points out conflict risk for 96.7% task pairs of our sample (the

16We restrict the set of changed files to Ruby and .html files (and common variations) into app or lib
folders.
17As a matter of brevity, we omit variants of HTML files, such as .haml and .erb files.
18For simplicity, we round the values, but they are not identical in the third decimal.



   27 Page 20 of 36 Empir Software Eng           (2023) 28:27 

Table 3 Precision, recall, and F2 measures of the TestI intersection predictor

Intersection lower bound Predicted positive condition rate (%) Precision Recall F2

1 96.70 0.59 0.98 0.86

2 92.41 0.60 0.95 0.85

3 88.07 0.60 0.91 0.83

4 78.90 0.62 0.84 0.78

5 71.07 0.63 0.77 0.74

percentage of flagged integrations presented by the second column at Table 3). As Table 4
summarizes, only 58.4% of them are risky (the tasks did change at least one file in common).
We observe there is much FP and not much FN, which benefits recall and compromises
precision. This way, by comparing the predicted positive condition rate, someone might con-
sider the predictor with a minimum intersection size of 4 files as a better option because it
suggests conflict risk for 79% task pairs and presents acceptable values of precision, recall,
and F2. In all cases, as better explained in Section 1, a false positive in our context does not
imply extra wasted developer effort; instead, it discourages the parallel execution of tasks.
This way, developers might ignore low-risk rates.

To better understand results, we inspect them from a project perspective. As an example,
Table 5 summarizes the results per project of the predictor with the minimum intersection
size. Note that the dataset is unbalanced: Projects with one integration and others with more
than 1,000 integrations. Most projects (18) have a recall value in range ]0.9, 1.0]. The excep-
tion is project action-center-platform, whose recall value is 0.78. Regarding precision, we
observe a more diverse distribution: 5 projects whose precision is in range ]0.9, 1.0], 12
projects whose precision is in range ]0.5, 0.9], and two projects whose precision value is
under 0.5 (projects otwarchive and whitehall). This way, we investigate the three mentioned
projects in detail: action-center-platform, otwarchive, and whitehall.

The prediction results of action-center-platform have no FPs and 8 FNs. Contrasting, the
results of otwarchive and whitehall have few FNs (3 and 4, respectivelly) and much FPs
(251 and 412, respectivelly). In all cases, prediction quality relates to TestI ability to predict
file changes: TestI fails to predict the files changed by the tasks, deriving failing risk pre-
dictions. In the case of project action-center-platform, TestI has few files (if we compare
its size with the size of the set of changed files), meaning TAITI ends test analysis pre-
maturely. For example, the tests reference unknown views, which might happen when the
tests are outdated, or TAITI cannot map the referenced view into a project file. In addition,
many file changes are unpredictable by TestI because they affect other files than Ruby and
HTML files, or there are implicit relationships among files defined by Rails that are not
reachable by the tests. As previously discussed by Rocha et al. (2019), projects otwarchive
and whitehall consistently have lower precision values related to file change prediction. The

Table 4 Characterization of the intersection between changed file sets in our task pair sample

Property Pairs % of Pairs

The intersection has at least one file (risky pairs) 3,712 58.4% of all pairs

The intersection has at least one Ruby or HTML file 2,316 36.4% of all pairs

The intersection has no Ruby or HTML files 1,396 37.6% of all risky pairs (21.9% of all pairs)



Empir Software Eng           (2023) 28:27 Page 21 of 36   27 

Table 5 Precision, recall, and F2 measures of the TestI intersection predictor with a minimum intersection
size of one file from a project perspective

Repository Name Integrations Precision Recall F2

allourideas.org 41 0.85 1.00 0.97

e-petitions 1,140 0.64 0.94 0.86

whitehall 781 0.46 0.99 0.80

bsmi 3 0.67 1.00 0.91

enroll 82 0.67 1.00 0.91

diaspora 296 0.74 0.99 0.93

action-center-platform 38 1.00 0.78 0.81

gitlabhq 10 0.90 1.00 0.98

wontomedia 1 1.00 1.00 1.00

jekyll 88 0.53 1.00 0.85

Claim-for-Crown-Court-Defence 2,294 0.57 0.99 0.86

one-click-orgs 46 0.72 1.00 0.93

opengovernment 1 1.00 1.00 1.00

openproject 12 0.92 1.00 0.98

otwarchive 495 0.49 0.99 0.82

RapidFTR 592 0.59 0.95 0.85

quantified 2 1.00 1.00 1.00

sequencescape 7 0.86 1.00 0.97

sharetribe 431 0.72 1.00 0.93

explanation is the limitations of the conservative strategy of code analysis supported by
TAITI and the test coding style adopted by the projects, causing much coincidence of iden-
tifiers among the project and library methods, and confusion when dealing with overridden
methods.

To conclude, we clarify that we experimentally delimit a small value range for the mini-
mal intersection size (our predictor), according to the size of the intersection between TestI
when there is a conflict risk and to the quality of prediction results. First, we observe that
58.4% of the integrations (see Table 4) have conflict risk. Also, almost half of the risky inte-
grations (49%) have up to 10 files in the intersection between TestI. So, we first computed
precision and recall using an intersection limit ranging from 1 to 10. Still, we observed a
substantial reduction in results quality (mainly in the recall measure) when such a limit is
larger than 5, as Fig. 10 illustrates.

5.2.2 The Prediction of Conflict Risk is Better When Considering All Files Concurrently
Modified by the Tasks

As in Section 5.1, we also investigate the alternative result that restricts a task’s changed
files set by excluding files not reachable by TestI (Table 6), expecting that such a strategy
would show better results by reducing FNs. We observed a reduction of FNs. But we fur-
ther found that 37.6% of all risky integrations (see Table 4) only affect files that are not



   27 Page 22 of 36 Empir Software Eng           (2023) 28:27 

Fig. 10 Predictions quality according to the minimal intersection size between two TestI interfaces. The
presented metrics are the mean value for our sample

reachable by TestI, decreasing TP, and increasing FP. Such a phenomenon severely decreases
precision and explains the slight increase in recall (a reduction of FN benefits recall whereas
a decrease of TP impairs recall), whether we compare results to those applied to all files
(Table 3).

5.2.3 For some Projects, Discarding Test Preconditions when Computing TestI
Interfaces Might Benefit the Prediction of Conflict Risk

Given that many tests require similar setup steps, such as those for specifying user authen-
tication actions, the interface files derived from these steps could not be relevant to most
tasks. Therefore, test interfaces might have many unchanged files by the corresponding
task. To investigate whether TestI intersections could consist mainly of such files, we

Table 6 Precision, recall, and F2 measures of the TestI intersection predictor when restricting a task’s
changed file set to contain only Ruby and HTML files

Intersection lower bound Precision Recall F2

1 0.37 0.98 0.74

2 0.38 0.95 0.73

3 0.38 0.92 0.71

4 0.39 0.85 0.69

5 0.40 0.78 0.66



Empir Software Eng           (2023) 28:27 Page 23 of 36   27 

Table 7 Precision, recall, and F2 measures of the alternative TestI intersection predictor, which discards
application files accessed by Cucumber Given steps

Intersection lower bound Precision Precision (%) Recall Recall (%) F2 F2 (%)

1 0.64 +8.34 0.88 −9.43 0.82 −4.86

2 0.65 +8.97 0.78 −17.39 0.75 −11.30

3 0.66 +9.58 0.70 −22.77 0.69 −15.97

4 0.67 +7.64 0.65 −21.94 0.66 −16.12

5 0.67 +6.22 0.61 −20.39 0.62 −15.44

The percentual values mean the proportion of increment or decrement related to the original predictor

additionally used TAITI to compute a variety of TestI that discards the files inferred from
test preconditions (Given steps of Cucumber scenarios, as Fig. 3a illustrates).

We find that such an alternative predictor slightly increases precision but decreases recall,
as summarized in Table 7. For instance, by adopting a minimal TestI intersection, the pre-
cision increases by 8.34%, and recall decreases by 9.43%, resulting in a reduction of F2
by 4.86%, discouraging the usage of the TestI variation as a predictor. However, from a
project perspective (see Table 8), we found the alternative predictor performs better for 3

Table 8 Precision, recall, and F2 measures of the alternative TestI intersection predictor from a project
perspective

Repository Name Precision Precision (%) Recall Recall (%) F2 F2 (%)

allourideas.org 0.83 −2.94 0.83 −17.14 0.83 −14.30

e-petitions 0.69 +6.96 0.87 −6.78 0.83 −3.47

whitehall 0.48 +4.60 0.96 −2.81 0.80 −0.35

bsmi 1.00 +50.00 1.00 0.00 1.00 +10.00

enroll 0.67 0.00 1.00 0.00 0.91 0.00

diaspora 0.75 +1.04 0.96 −2.75 0.91 −1.83

action-center-platform 0.95 −4.55 0.54 −30.77 0.59 −27.53

gitlabhq 0.88 −2.78 0.78 −22.22 0.80 −18.69

wontomedia 1.00 0.00 1.00 0.00 1.00 0.00

jekyll 0.64 +20.11 1.00 0.00 0.90 +5.64

Claim-for-Crown-Court-Defence 0.67 +18.02 0.84 −15.26 0.80 −7.30

one-click-orgs 0.79 +10.80 1.00 0.00 0.95 +2.58

opengovernment 1.00 0.00 1.00 0.00 1.00 0.00

openproject 0.86 −6.49 1.00 0.00 0.97 −1.47

otwarchive 0.49 0.00 0.99 0.00 0.82 0.00

RapidFTR 0.61 +3.17 0.93 −2.44 0.84 −0.89

quantified 1.00 0.00 1.00 0.00 1.00 0.00

sequencescape 0.86 0.00 1.00 0.00 0.97 0.00

sharetribe 0.80 +11.76 0.81 −19.23 0.81 −13.01

The percentual values mean the proportion of increment or decrement related to the original predictor



   27 Page 24 of 36 Empir Software Eng           (2023) 28:27 

projects from our sample (bsmi, jekyll, and one-click-orgs): the values of precision and F2
increase, with no changes in the recall, implying a reduction of FP numbers. Also, we found
no changes in the results of 6 projects, meaning there are no application files exclusively
accessed by Given steps. The test coding style varies between projects as some of them
reproduce user interactions faithfully and others omit details to improve performance. In this
sense, these results suggest that our alternative TestI predictor depends on the particularities
of each project and should not be universally applied for all projects.

5.2.4 The Intersection Between TestI Interfaces Might Predict Conflict Risk,
EvenWhen it Does Not Predict the Potential Conflicting Files

So far, we discuss the prediction of conflict risk among tasks by abstracting the files in
which the conflict might occur. To better evaluate our predictions, we investigate how often
TestI guesses the risky files, that is, the files that are more vulnerable to conflicts because
tasks concurrently changed them. We observe that 58.4% of the integrations in our sample
have the risk of a merge conflict, i.e., the tasks change at least one file in common. For
35.8% of the risky integrations (see Table 9), the intersection between TestI predicts at
least a potential conflicting file. Whether we consider files genuinely reachable by TestI,
36.4% of the integrations are risky (see Table 4). And as expected (the number of correct
predictions does not change), the accuracy is higher in such a case: the intersection between
TestI predicts some potential conflicting file in 57.4% of the risky integrations.

Sometimes limitations and imprecisions of TAITI tool, which Rocha et al. (2019)
explains, prevent the inclusion of a potential conflicting file in TestI. For example, because
TAITI does not analyze other application files beyond views, TestI reaches only the surface
of the code that the tests could exercise. Consequently, conflicting files are not covered. In
other cases, TestI cannot guess a potential conflicting file because of limitations related to
the tasks. For instance, by manually inspecting some task pairs, we observe no clear rela-
tionship between tasks and their tests, suggesting they are not cohesive and probably have
poor test coverage.

By relating all observations so far, we conclude that even when developers do not change
the files included in TestI, the intersection between TestI might help. Such an intersection
might reflect a degree of proximity between the parts of the code changed by both tasks,
eventually leading to conflicts, even in files not directly reached by the interfaces, as Fig. 11
illustrates. In such a figure, File 2 points out that there is conflict risk between tasks T1
and T2. The conflict affects File 1, which is not part of the intersection of TestI(T1) and
TestI(T2), but File 2 depends on File 1. Therefore, even when TestI does not predict the
potential conflicting files, it might indicate the risk of conflicts between programming tasks.

Table 9 Characterization of the intersection between TestI interfaces in our task pair sample

Property #Pairs #Pairs (%)

The intersection predicts at least one poten-
tial conflicting file

1,330 35.8% of all risky pairs (20.9% of all pairs)

The intersection has some controller file 4,644 73% of all pairs

The intersection has at least one file in com-
mon from some related slice

1,205 26% of integrations that have some con-
troller file in the TestI intersection (19% of
all integrations)



Empir Software Eng           (2023) 28:27 Page 25 of 36   27 

Fig. 11 The intersection between TestI interfaces might predict conflict risk between programming tasks,
even when it does not predict the conflicting file

5.3 RQ3: Is the Intersection Size Between Two TestI Interfaces Proportional
to the Number of Files Changed in Common by the Corresponding Tasks?

5.3.1 The Larger the Intersection Between TestI, the Higher the Risk of Merge Conflict
Between Tasks

Given that our data deviates from normality, we answer RQ3 by computing the Spearman’s
rank correlation coefficient with α = 0.05 and the Cohen’s assignment of effect size’s
relative strength (0.10 <= small < 0.3, 0.3 <= medium < 0.50, and large >= 0.50).

We find that the larger the intersection size between TestI, the larger the number of files
changed by both tasks, considering a small correlation (p < 0.001 and ρ = 0.21). The same
applies when dealing only with Ruby and HTML files (i.e., files reachable from TestI, as
explained in Section 5.1), with ρ = 0.15. We cannot expect a significant correlation because
developers might not change all files in TestI.

In practice, this result suggests that developers can reduce the likelihood of merge con-
flicts by prioritizing tasks based on the size of the intersection among their test-based
task interfaces. It is preferable to concurrently develop tasks whose TestI interfaces have
smaller intersection sizes, as they likely change fewer files in common. In such a context,
we consider a dynamic schedule that depends on selecting the next task to be handled by
each developer. As illustrated in Section 2, Andrew and Becca could prevent conflicts by
selecting a task whose TestI has a minor intersection with the TestI of tasks T175 or T176.

In summary, we observe that the intersection size between two TestI interfaces correlates
with the number of files changed in common by the corresponding tasks.

5.4 RQ4: Is TestI a More Correct and Complete Predictor of Conflict Risk than TextI?

5.4.1 Tasks with Non-Disjoint TextI Interfaces More Likely Change a Common File

When the TextI interfaces of two tasks intersect, the tasks are 3.20 times (the odds ratio of
the logistic regression, as explained in Section 3.4) more likely to change a file in common.
Such a result seems better than the TestI result (odds ratio of 2.07) because the odds ratio is
higher and the deviance19 is lower. In the case of files reachable from TestI (i.e., Ruby and
HTML files, as explained in Section 5.1), the likelihood is 2.25, a smaller value, contrasting

19As a matter of brevity, we present detailed results in our online Appendix.



   27 Page 26 of 36 Empir Software Eng           (2023) 28:27 

with the TestI result. This result implies many potential conflicting files according to TextI
cannot be part of TestI, as false negatives increase.

In any case, these findings corroborate with the idea that someone might use TextI as a
predictor of conflict risk. Still, a complete comparison between TestI and TextI as predictors
depends on the evaluation of precision, recall, and F2.

5.4.2 TextI is a More Precise Predictor of Conflict Risk than TestI, but it Predicts
Fewer Risks

Table 10 summarizes the evaluation results of TextI. We show only minimum intersection
sizes 1 and 2 because the recall is insignificant for larger values. We can observe that the
improvement in precision is expressive for TextI, but the recall is severely affected, resulting
in significantly worse F2 values for TextI. In practice, if a file relates to the most similar
past tasks (all of them modified the file), it has more chance to connect to the new task.
Then, whether most files in TextI genuinely relate to the tasks, non-disjoint TextI interfaces
have more chance of a TP of conflict risk. This way, the number of FPs decreases. However,
given that recall is more relevant than precision in the context of conflict prevention (see
Section 3.2), such a result discourages the usage of TextI as a predictor of conflict risk
between programming tasks.

To better understand results, we inspect some task pairs for which predictions are contra-
dictory: The TestI-based predictor points to conflict risk and the TextI-based predictor does
not, and vice-versa. For example, let us see tasks T215 and T256 from project e-petitions.
These tasks make parallel changes in two files, the TestI-based predictor points to conflict
risk (although it cannot guess the conflicting files), but the TextI interfaces are disjoint.
First, we observed limited test coverage for both tasks. The tests of T215 focused on archived
petitions, but the code changes include refactorings and generic layout improvements. The
tests of T256 focused on record notes, but the code changes include refactorings, layout
improvements, and requirements changes, such as changes on user permissions. We rely on
textual similarity among Cucumber scenarios for computing TextI and test code for comput-
ing TestI, so tests impact both predictors. Even so, the intersection among TestI interfaces
reflects some degree of functional proximity between the tasks. Contrasting, TextI inter-
faces do not capture such proximity in this case. By inspecting the entry similar past tasks
of T215 and T256, we observed that they seem not cohesive tasks, resulting in a diverse set
of changed files.

In case of tasks T332 and T345 from project e-petitions, we found the oposity result.
These tasks make parallel changes in four files, the TextI-based predictor points to conflict

Table 10 Precision, recall, and F2 measures of TextI intersection predictor

Intersection Predicted positive

lower bound condition rate (%) Precision Recall F2

1 35.82 0.75 (+27.84%) 0.46 (−52.65%) 0.50 (−41.94%)

2 14.72 0.81 (+34.80%) 0.20 (−78.53%) 0.24 (−71.81%)

The percentual values mean the proportion of increment or decrement related to the TestI intersection
predictor



Empir Software Eng           (2023) 28:27 Page 27 of 36   27 

risk, but the TestI interfaces are disjoint. This time, we observed that both tasks relate to
the searching mechanism for petitions provided by the application. The intersection among
TextI interfaces shows that similar past tasks changed some test files in common. However,
TAITI computes a limited TestI interface for task T345, i.e., the tool prematurely concludes
the test code analysis. This way, based on the presented examples and many others we
carefully analyzed, we reinforce the influence of the test coverage, the task cohesion, and
the limitations of TAITI on results.

As in Section 5.2, we also investigate the alternative result that restricts a task’s changed
files set by excluding files not reachable by TestI. But the effect over predictions of conflict
risk based on TextI is similar to the previously reported.

5.4.3 A Predictor of Conflict Risk Based on Both TestI and TextI Underperforms
a Predictor Based on TestI

Finally, as a previous study (Rocha et al. 2019) suggests that the files in the intersection
between TestI and TextI are more likely changed by the corresponding task, we investigate
here whether they are more strongly associated with conflict risk. Thus we also evaluate
a hybrid task interface based on the intersection between TestI and TextI. The hybrid task
interface further improves precision (0.86) and decreases recall (0.14) and F2 (0.17). The
explanation is similar to the TextI results. The intersection between TestI and TextI is less
probable and probably filters out files wrongly included in TestI by TAITI. So, FPs further
decrease, benefiting precision. However, most potential conflicting files are not covered,
increasing FNs and compromising recall.

In summary, we observe that TestI is a better predictor of conflict risk than TextI, and a
hybrid task interface based on both TestI and TextI is not a viable alternative predictor.

5.5 RQ5: A Predictor Based on TestI Intersection is Better than a Predictor Based
on TestI Similarity

First, given that TestI is a set of files, we confirm a relation between TestI similarity and
conflict risk using a logistic regression model, similar to RQ1. This time, the independent
variable is the similarity between two TestI, which worthes false whenever there is no sim-
ilarity between interfaces. Next, we observe that the precision and recall results from the
predictor based on TestI similarity are very similar to those from the predictor based on TestI
intersection, but the second is slightly better.

By further investigating the results, we realize that the proportion between equalities and
differences, which impacts the similarity measure, might disturb the conclusion about con-
flict risk. It does not matter how different two TestI interfaces are; if they have common
files, there is conflict risk. For example, the similarity between TestI of two task pairs from
project alphagov/whitehall is 0.86 and 0.95, respectively. The task pair with lower simi-
larity changed 34 files in common, and the other task pair, two files, meaning the conflict
risk is higher for the first task pair, contradicting the conclusion of the similarity rate. How-
ever, confirming the conflict risk, the intersection between TestI of the task pair with lower
similarity has 58 files, whereas the other task pair has 27 files.

In summary, although a predictor based on TestI similarity performs similar to the one
based on TestI intersection, the second is the best option because it better reflects the notion
of conflict risk and is cheaper to compute.



   27 Page 28 of 36 Empir Software Eng           (2023) 28:27 

5.6 RQ6: TestI Cannot Predict Conflict Risk in MVC Slices

By investigating our sample, we observe that 73% of the task pairs have some controller
file in the intersection between the TestI of the integrated tasks (see Table 9). From this
subset, the tasks of 26% integrations (see Table 9) change at least one file in common from
some slice identified by controllers in the intersection between two TestI. But the logistic
regression model does not confirm that controllers in TestI are predictors of conflict risk
in their associated MVC slices. Thus, we conclude that TestI cannot predict conflict risk
in MVC slices, which means that recommending developers avoid concurrent execution of
tasks that focus on the controller of the same slice might be overkill.

6 Implications

Our results suggest that test-based task interfaces, whenever possible, could be used by
developers as an additional factor to consider when dynamically scheduling programming
tasks to prevent merge conflicts. The prerequisite is the adoption of BDD, where the devel-
opment team designs acceptance tests before application code. In addition, extensive test
coverage is crucial. Even when dealing with well-designed tests, predictions will be fragile
whenever the tests do not cover the task appropriately, given tests are the start point for com-
puting TestI. If TestI approximates the changed files, the intersection between TestI better
approximates the concurrently changed files, which are more vulnerable to merge conflicts.

A BDD context is often associated with self-managed agile teams where developers
choose programming tasks to perform. But the usage of TestI applies even if a project man-
ager allocates tasks to developers. The idea is that a developer might only execute a task with
associated acceptance tests, and task prioritization should consider conflict risk, whereas
other factors are under control. Project restrictions concerned with time and resources,
stakeholders’ priority, task complexity, and developer skills are examples of priority factors.

This way, given the sprint planning, a developer or project manager should quickly iden-
tify the candidate tasks to perform organized in a ranking related to conflict risk with the
other ongoing tasks. Given that the intersection size between two TestI interfaces is a degree
of conflict risk between a task pair, we expect that tasks with fewer overlapping interfaces
would be less likely to lead to conflicting code changes when executed concurrently with
the ongoing tasks. Therefore, we can estimate the conflict risk between a candidate task and
ongoing tasks as the sum of the size of its intersection values related to each ongoing task.
In addition, tasks ranking would sort tasks by ascending order of risk rate.

Concerning the specificities of a predictor of conflict risk based on TestI, our results show
that we favor precision and prejudice recall when inflating the intersection size between
TestI. And we reach the opposite effect when we reduce the intersection size. Consider-
ing that we cannot propose a unique intersection value for all projects, we conclude that a
promising solution is to provide a configurable predictor of conflict risk based on test-based
task interfaces. Thus, each team might define a minimal intersection limit between TestI (see
Table 3), enabling an optimistic (emphasis on precision, larger intersection size) or pessimist
strategy (emphasis on recall, fewer intersection size). For us, recall seems more relevant
than precision in the context of conflicts, as a lower recall rate implies a higher number of
unexpected conflicts. But a lower precision rate indicates that predictions might disturb task
scheduling, and someone might perceive it as more critical than unforeseen conflicts.

Similarly, our results show that discarding test preconditions when computing TestI
interfaces might benefit the prediction of conflict risk for some projects. So, ignoring test



Empir Software Eng           (2023) 28:27 Page 29 of 36   27 

preconditions should be a second configurable property of our predictor of conflict risk. We
recommend that a team opts to enable it if the team has a culture of design acceptance tests
that faithfully reproduce user interactions.

7 Threats to Validity

In this section, we explain potential threats to the validity of our empirical study.

7.1 Construct Validity

We try to select relevant projects to construct our task pair sample but accurately evaluat-
ing relevance is not trivial, leading us to adopt broadly accepted proxies by other studies.
For example, Dias et al. (2020) used project activity and star count as proxies for meaning-
ful projects, and Borges et al. (2016) used the star count as a proxy of project popularity.
However, relevant projects might have been concluded a while, or a developer can star a
repository for creating a bookmark for later analysis, meaning our proxies might wrongly
exclude or include projects.

We assume that merged contributions correspond to programming tasks defined by a
BDD team, which might not always apply. We did not verify if developers wrote tests before
implementing the associated functionality. We checked if tasks both contribute with applica-
tion code and Cucumber tests. This way, by dealing with completed tasks in a retrospective
analysis, we derived predictions based on mature tests (tests on its final version). Differ-
ences in test maturity might impact risk predictions. An alternative would be to delimit a
task as a set of commits whose messages refer to the same task id or consider each pull
request as a task. However, in conjunction with other restrictive criteria, such as the usage
of Cucumber, task id or pull requests further restricted our task sample. Also, the limitation
about the BDD context would remain.

As previously explained, we simulate the integration of possible concurrent tasks, i.e.,
tasks concluded with no more than 30 days of difference. But we would better restrict our
sample of possible concurrent tasks based on the tasks’ init date and duration. Alternatively,
we would verify if possible concurrent tasks change or add files on the same date, reinforc-
ing a realistic sample of parallel tasks. For simplicity, we adopted a more straightforward
solution. Even so, we can expect that most task pairs satisfy the condition of making parallel
changes.

7.2 Internal Validity

Our study evaluates whether TestI helps predict the risk of merge conflicts when integrating
the code produced by programming tasks. However, TAITIr tool is limited and derives an
approximation of TestI, wrongly including or excluding files into it. For example, TAITIr
might wrongly exclude files in case the tests reference a view file by using code that relies
on a variable, impairing the identification of such a file (Rocha et al. 2019). Also, our
definition of a programming task as a set of commits is an approximation (see our criteria
in Section 4.2). In addition, by ignoring that some commits might revert the changes made
by other commits, we might wrongly delimit the set of changed files by tasks, impacting
the evaluation of conflict predictions. Even so, given that tangled contributions (Dias et al.
2015) are frequent in practice, such a limitation might make our definition of a programming
task more realistic.



   27 Page 30 of 36 Empir Software Eng           (2023) 28:27 

Besides, we assume the Cucumber tests that are part of a contribution validate the sup-
posed task’s expected behavior. However, in the case of bug fix or refactorings, for instance,
it is possible that tests previously developed also validate the contribution, which means that
we might provide an incomplete input for TAITIr, ignoring relevant tests when computing
TestI.

Also, when computing TestI, we considered the final version of the tests. In the case
of BDD, the tests would be in an initial version that developers might refine until the
conclusion of a programming task. The difference in test maturity might impact risk
predictions.

When dealing with conflict risk, we check whether the tasks changed any file in common
by ignoring file renaming. Consequently, we might miss some intersections between the
tasks’ changed files set, which impacts the quality of our predictions. Given that we do
not integrate tasks by Git, we cannot reuse its mechanism for detecting file renames. Also,
we do not adequately deal with file remotion. In practice, a merge conflict happens when
a task removes a file changed by another task. Thus, in such a situation, we registry there
is a conflict risk. However, TestI does not predict file remotion, which might inflate the
false negatives, reducing the quality of our predictions. In turn, hoping to conduct a fair
evaluation, we discarded tasks with empty TestI, given an empty TestI does not intersect
with others, which might artificially improve predictions.

Finally, we might have missed integration scenarios during the construction of our task
sample, as the projects might use Git mechanisms such as rebase, squash, stash apply, and
cherry-pick, which rewrites project history. As a consequence, we might further restrict our
sample. The impact of an increased sample on our results is unpredictable. Even so, we
expect that we have lost a small number of tasks, given that the good practice is to rebase
locally only, and we extracted tasks from the master branch.

7.3 External Validity

Our sample contains only GitHub Rails projects that use Cucumber because TAITIr requires
it. Such a limitation prevents us from generalizing the results. Even so, we imagine that
it is possible to get more accurate test-based interfaces when dealing with statically typed
languages and more straightforward frameworks. As a consequence, predictions related to
the risk of merge conflicts might be more accurate as well. This way, we can see our results
as a pessimistic approximation of the true potential of TestI.

8 RelatedWork

A previous study (Rocha et al. 2019) proposes a strategy and a proof of concept tool (TAITI)
for predicting the files that a programming task will change. The prediction is based on
the acceptance tests that validate the behavior of the functionality underlying a task, and
applies in the context of BDD projects. In this paper, we use an extended version of the
same tool (TAITIr), but to investigate whether the test-based interfaces it generates has the
potential of predicting merge conflict risk among programming tasks. This way, we conduct
an empirical study by collecting a sample of 990 tasks extracted from merge scenarios from
19 Rails projects that use Cucumber for specifying acceptance tests. Then we simulate the
integration of possible concurrent tasks per project, computing the intersection between the
set of files changed by both tasks in a pair. As a result, we have a set of 6,360 task pairs, for
which we evaluate precision and recall measures of conflict predictions based on TestI.



Empir Software Eng           (2023) 28:27 Page 31 of 36   27 

Kasi and Sarma (2013) developed the Cassandra tool for recommending an optimum
order of task execution per developer aiming to prevent conflicts (not only merge conflicts
but also build and test failures). The recommendation considers the files each task is sup-
posed to edit, which the developers should inform; the files that depend on the files that
will change, which are identified by call-graph analysis; and developers’ preference about
the order of task execution. This way, Cassandra assumes tasks that change the same files
are more vulnerable to cause merge conflicts, whereas tasks changing dependent files are
more likely to cause a build or test failure. Contrasting, we envision a task prioritizing strat-
egy for preventing merge conflicts that support the developers when selecting a new task to
perform. Developers dynamically decide the order of task execution based on information
about merge conflict likelihood. Also, rather than asking developers to guess the set of files
to be changed by a task, which is challenging and error-prone, we propose using the TAITI
tool for predicting it, deriving test-based task interfaces. Despite the strategy differences,
one could integrate TAITI to Cassandra for predicting the files that tasks will change, pro-
vided we have language compatible versions of these tools (currently, Cassandra analyzes
Java systems, whereas TAITI analyzes Rails systems).

Other studies (Zimmermann et al. 2004; Ying et al. 2004; Denninger 2012; Giger et al.
2012; Bailey et al. 2012) try to predict code changes for anticipating software faults and
bugs. They rely on code dependencies, assuming that they can propagate code changes,
similar to Cassandra tool. However, the developers still need to provide an initial file set
for the predictive analysis. In our context, we also can use dependencies to predict the files
a task will change and evaluate the risk of merge conflict between tasks. In this sense, we
understand that we can complement test-based task interfaces by verifying the structural
and logical dependencies of its files.

Some studies investigate merge conflicts to understand their cause and support develop-
ment teams to avoid them by recommending development practices. For instance, Leßenich
et al. (2018) analyze the predictive power of several indicators over the number of merge
conflicts, such as the number, size, or scattering degree of commits in each branch. Surpris-
ingly, they did not find evidence that the indicators apply for the whole sample, but only
on a per-project basis. Dias et al. (2020) reproduce and analyze several merge scenarios of
Rails and Django projects to understand how technical and organizational factors affect the
occurrence of conflicts. They found evidence that the likelihood of merge conflict increases
significantly when merged contributions involve files from the same MVC slice. Also, more
extensive contributions involving more developers, commits, and changed files are more
likely associated with merge conflicts and contributions developed over extended periods.

Ahmed et al. (2017) investigate the effect of code smells on merge conflicts and found
that entities that are smelly are three times more likely to be involved in merge con-
flicts. From a complementary perspective, our study aims to predict and prevent merge
conflicts by predicting the files a programming task will change based on the code of
the automated acceptance tests that validate its behavior. This way, teams might com-
bine our strategy with development practices for detecting code smells. In the first case,
developers integrate their contributions frequently to verify them by automatically running
build and test scripts. In turn, continuous delivery extends continuous integration to enable
developers to release software to production at any time. For such purpose, developers fre-
quently deploy the application into production-like environments to ensure the software will
work in production. In both cases, the main objective is to detect conflicts and defects as
quickly as possible. Although the early detection of conflicts might avoid increasing conflict
complexity, developers still will have to spend time solving conflicts.



   27 Page 32 of 36 Empir Software Eng           (2023) 28:27 

Besides, the practice of code review (Bacchelli and Bird 2013), which recommends
reviewers to search for issues before integrating code into the central repository, might also
help to prevent conflicts. However, its emphasis is on code quality rather than conflicts, and
it is an expensive activity, even with tool support. Some agile practices, such as daily stand-
up meetings, might prevent conflicts by promoting communication and clarifying ongoing
tasks (Stray et al. 2016). Even so, communication might be more imprecise than software
artifacts. That’s why we prioritize an automatic solution for predicting conflict risk, aiming
to promote developers’ productivity and effectiveness.

Similar to development practices, workspace awareness tools (Biehl et al. 2007; Dewan
and Hegde 2007; Sarma et al. 2012; Brun et al. 2013; Guimarães and Silva 2012) also
support early conflict detection. They monitor the developers’ workspace and emit notifica-
tions when they detect potential conflicts by analyzing the code changes in progress. Early
detecting conflicts is a strategy to reduce the effort to solve them, as previously argued.
Even so, whether conflict occurs, developers spend time to understand and solve it. Like-
wise, specific-language merge tools (Apel. et al. 2011, 2012) solve and avoid some spurious
conflicts reported by the state of the practice tools. Thus, these merge tools focus on con-
flict resolution, whereas our focus is conflict avoidance. As developers might change files
not aligned with their programming tasks and predictions of conflict risk might fail, there
is no solution to extinguish merge conflicts. Thus, we understand our solution and specific-
language merge tools complement each other, and a development team might benefit from
adopting both.

Mylyn (Kersten and Murphy 2006) is an Eclipse plugin that monitors developers’
workspace to track relevant resources (e.g., selected or edited files) and updates the IDE
accordingly. Its main objective is to improve developer productivity, focusing their atten-
tion on what matters to complete a task. Mylyn calls the set of relevant resources for a
task as task context. Using a prioritizing policy for resources based on user interaction,
Mylyn delineates a task context during the development of the application code. Instead,
we predict the task context before developing application code related to the task. There-
fore, someone can use Mylyn to identify ongoing tasks that might cause conflicts and adopt
a coordination strategy to alleviate or even prevent conflicts, as explored by the tool Prox-
iScientia (Borici et al. 2012). Nevertheless, Mylyn is not able to predict task interfaces nor
predict that planned tasks might cause conflicts.

9 Conclusions

Given merge conflicts occur frequently and demand extra effort to be solved, the ability to
predict conflict risk might promote development productivity. Aware of such a risk, a devel-
oper might wisely choose a task to work on, reducing the chances of conflict occurrence.
Even when choosing a risky task due to other project restrictions or priorities, the upfront
knowledge about conflict risk might be helpful. Teams might coordinate efforts like improv-
ing test coverage planning to check the risky code better and detect stronger communication
needs among members.

Our retrospective study results show that tasks with non-disjoint TestI interfaces are more
likely to change a common file, which means they are more likely to cause a merge con-
flict. Also, the larger the intersection between TestI, the higher the risk of a merge conflict
between tasks. Thus, when choosing the next task to perform, a developer should prioritize



Empir Software Eng           (2023) 28:27 Page 33 of 36   27 

the one that has the smaller intersection with the TestI of other tasks. Although the inter-
section between TestI might predict potentially conflicting task pairs, TestI does not always
indicate the potential conflicting files. In such cases, TestI might suggest a degree of prox-
imity between the parts of the code changed by both tasks, eventually leading to semantic
conflicts. Complementarily, we find our predictions are better when we compare them with
the risk result by considering all kinds of files changed by the tasks, though TestI only con-
tains Ruby and HTML files. In addition, we verify that we can improve predictions for some
projects by discarding test preconditions when computing TestI interfaces. Finally, com-
pared to a TextI-based predictor, our predictor is less precise but covers most conflicts (i.e.,
it has a high recall rate). We conclude that TestI has overall better performance, given that
recall is more important than precision in the context of conflicts.

Note that we focus on understanding the cases where TestI and TextI interfaces seem to
work. A complementary analysis would investigate cases where both interfaces do not work,
or some work, aiming to propose alternative solutions. We plan to do it as future work.

Concerning the prediction of merge conflict occurrence, we conclude that our predictor
based on the intersection between TestI interfaces has potential. It detects conflict risk when
tasks are likely to change files in common, which is a precondition of conflict occurrence.
The conflict only occurs when the tasks change the same hunk of a file, indeed. Thus, we
expect conflicts to occur in a subset of risk predictions, whether the tests genuinely relate to
the tasks.

These findings motivate the conduction of a case study to evaluate further the potential
of TestI for reducing conflicts in the field. For instance, a requirement for computing TestI
is writing automated acceptance tests before implementing features, a BDD practice, but
BDD is not widespread in the context of software development. If projects do not adopt
BDD, they might feel uninterested in our approach to avoid conflicts. On the other hand,
we believe that our strategy promotes BDD practices. In this sense, someone might feel
motivated to adopt BDD once he understands that acceptance tests might help to reduce
merge conflicts besides other software quality benefits. Therefore, we need to conduct a
case study to estimate the influence of our strategy on the dynamics of development teams
and other human and social effects that might compromise its performance and acceptance.

Also, in our retrospective study, we considered the final version of the tests. In the
case of BDD, the tests might evolve in conjunction with the task development, impact-
ing risk predictions. A case study might enable us to understand better and evaluate this
phenomenon.

Our future study requires the conclusion of the development of TAITIr for supporting
developers to choose a task to perform based on the conflict risk with other tasks (instead
of task pairs), integrating it with the development environment and a task management tool.

Acknowledgements For partially supporting this work, we would like to thank INES (National Software
Engineering Institute) and the Brazilian research funding agencies CNPq (grant 309741/2013-0), FACEPE
(grants IBPG-0546-1.03/15 and APQ/0388-1.03/14), and CAPES.

Author Contributions All authors contributed to the study conception and design. Material preparation,
data collection and analysis were performed by Thaı́s Rocha. The first draft of the manuscript was written
by Thaı́s Rocha and all authors commented on previous versions of the manuscript. All authors read and
approved the final manuscript.

Funding Partial financial support was received from INES (National Software Engineering Institute) and
the Brazilian research funding agencies CNPq (grant 309741/2013-0), FACEPE (grants IBPG-0546-1.03/15
and APQ/0388-1.03/14), and CAPES.



   27 Page 34 of 36 Empir Software Eng           (2023) 28:27 

Data Availability The datasets generated during and/or analyzed during the current study are available in
this website: https://thaisabr.github.io/conflict-risk-prediction-study-site/.

Declarations

Conflict of Interests The authors have no competing interests to declare that are relevant to the content of
this article. The authors have no relevant financial or non-financial interests to disclose. All authors certify
that they have no affiliations with or involvement in any organization or entity with any financial interest or
non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no
financial or proprietary interests in any material discussed in this article.

References

Accioly P, Borba P, Cavalcanti G (2017) Understanding semi-structured merge conflict characteristics in
open-source java projects. Empirical Software Engineering https://doi.org/10.1007/s10664-017-9586-1

Adams B, McIntosh S (2016) Modern release engineering in a nutshell – why researchers should care. In:
2016 IEEE 23Rd international conference on software analysis, evolution, and reengineering (SANER),
vol 5. pp 78-90

Ahmed I, Brindescu C, Mannan UA, Jensen C, Sarma A (2017) An empirical examination of the relationship
between code smells and merge conflicts. In: 2017 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), pp 58–67

Apel S, Liebig J, Brandl B, Lengauer C, Kästner C (2011) Semistructured merge: Rethinking merge in
revision control systems. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering. ACM, New York, pp 190–200. ESEC/FSE ’11,
https://doi.org/10.1145/2025113.2025141

Apel S, Leβenich O, Lengauer C (2012) Structured merge with auto-tuning: Balancing precision and per-
formance. In: Proceedings of the 27th IEEE/ACM International Conference on Automated Software
Engineering. ACM, New York, pp 120–129. ASE 2012, https://doi.org/10.1145/2351676.2351694

Bacchelli A, Bird C (2013) Expectations, outcomes, and challenges of modern code review. In: Proceedings
of the 2013 International Conference on Software Engineering, IEEE Press, pp 712–721

Bailey M, Lin KI, Sherrell L (2012) Clustering source code files to predict change propagation during soft-
ware maintenance. In: Proceedings of the 50th Annual Southeast Regional Conference. ACM, New York,
pp 106–111. ACM-SE ’12, https://doi.org/10.1145/2184512.2184538

Bass L, Weber I (2016) Zhu l, A Software Architect’s Perspective. Addison-Wesley Professional, DevOps
Berry DM (2017) Evaluation of tools for hairy requirements engineering and software engineering tasks.

Tech. rep., University of Waterloo, https://cs.uwaterloo.ca/∼dberry/FTP SITE/tech.reports/EvalPaper.
pdf. Accessed: Jan 2021

Biehl JT, Czerwinski M, Smith G, Robertson GG (2007) Fastdash: A visual dashboard for fostering aware-
ness in software teams. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, New York, pp 1313–1322. CHI ’07, https://doi.org/10.1145/1240624.1240823

Borges H, Hora A, Valente MT (2016) Understanding the factors that impact the popularity of github repos-
itories. In: 2016 IEEE International Conference on Software Maintenance and Evolution (ICSME), pp
334–344, https://doi.org/10.1109/ICSME.2016.31

Borici A, Blincoe K, Schröter A, Valetto G, Damian D (2012) Proxiscientia: Toward real-time visualization
of task and developer dependencies in collaborating software development teams. In: 2012 5th Inter-
national Workshop on Co-operative and Human Aspects of Software Engineering (CHASE), pp 5–11,
https://doi.org/10.1109/CHASE.2012.6223024

Brun Y, Holmes R, Ernst MD, Notkin D (2013) Early detection of collaboration conflicts and risks. IEEE
Trans Softw Eng 39(10):1358–1375. https://doi.org/10.1109/TSE.2013.28

Cavalcanti G, Borba P, Accioly P (2017) Evaluating and improving semistructured merge. Proc ACM
Program Lang 1(OOPSLA):59:1–59:27. https://doi.org/10.1145/3133883

Cubranic D, Murphy GC, Singer J, Booth KS (2005) Hipikat: A project memory for software development.
IEEE Trans Softw Eng 31(6):446–465. https://doi.org/10.1109/TSE.2005.71

Denninger O (2012) Recommending relevant code artifacts for change requests using multiple predic-
tors. In: Proceedings of the Third International Workshop on Recommendation Systems for Software
Engineering. IEEE Press, Piscataway, pp 78–79. RSSE ’12, http://dl.acm.org/citation.cfm?id=2666719.
2666737

https://thaisabr.github.io/conflict-risk-prediction-study-site/
https://doi.org/10.1007/s10664-017-9586-1
https://doi.org/10.1145/2025113.2025141
https://doi.org/10.1145/2351676.2351694
https://doi.org/10.1145/2184512.2184538
https://cs.uwaterloo.ca/~dberry/FTP_SITE/tech.reports/EvalPap er.pdf
https://cs.uwaterloo.ca/~dberry/FTP_SITE/tech.reports/EvalPap er.pdf
https://doi.org/10.1145/1240624.1240823
https://doi.org/10.1109/ICSME.2016.31
https://doi.org/10.1109/CHASE.2012.6223024
https://doi.org/10.1109/TSE.2013.28
https://doi.org/10.1145/3133883
https://doi.org/10.1109/TSE.2005.71
http://dl.acm.org/citation.cfm?id=2666719.2666737
http://dl.acm.org/citation.cfm?id=2666719.2666737


Empir Software Eng           (2023) 28:27 Page 35 of 36   27 

Dewan P, Hegde R (2007) Semi-synchronous conflict detection and resolution in asynchronous software
development. In: ECSCW 2007, Springer, pp 159–178

Dias K, Borba P, Barreto M (2020) Understanding predictive factors for merge conflicts. Inf Softw Technol
121:106256

Dias M, Bacchelli A, Gousios G, Cassou D, Ducasse S (2015) Untangling fine-grained code changes. In:
2015 IEEE 22Nd international conference on software analysis, evolution, and reengineering, SANER,
IEEE, pp 341–350

Fowler M (2010) Feature toggle. https://martinfowler.com/bliki/FeatureToggle.html. Accessed: Jan 2021
Fowler M (2020) Feature Branch. https://martinfowler.com/bliki/FeatureBranch.html. Accessed: Jan 2021
Giger E, Pinzger M, Gall HC (2012) Can we predict types of code changes? an empirical analysis. In: Mining

Software Repositories (MSR), 2012 9th IEEE Working Conference on, pp 217–226
Grinter RE (1997) Supporting articulation work using software configuration management systems. Comput

Supported Coop Work 5(4):447–465
Guimarães ML, Silva AR (2012) Improving early detection of software merge conflicts. In: Proceedings of

the 34th International Conference on Software Engineering. IEEE Press, Piscataway, pp 342–352. ICSE
’12, http://dl.acm.org/citation.cfm?id=2337223.2337264

Henderson F (2017) Software engineering at Google. https://arxiv.org/abs/1702.01715, Accessed: Jan 2021
Hodgson P (2017a) Feature branching vs. feature flags: What’s the right tool for the job? Tech. rep., DevOps

Blog. https://devops.com/feature-branching-vs-feature-flags-whats-right-tool-job/, Accessed: Jan 2021
Hodgson P (2017b) Feature toggles (aka Feature Flags). https://martinfowler.com/articles/feature-toggles.

html. Accessed: Jan 2021
Kasi BK, Sarma A (2013) Cassandra: Proactive conflict minimization through optimized task scheduling. In:

Proceedings of the 2013 International Conference on Software Engineering, IEEE Press, ICSE ’13, pp
732–741

Kersten M, Murphy GC (2006) Using task context to improve programmer productivity. In: Proceed-
ings of the 14th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
Association for Computing Machinery, pp 1–11, https://doi.org/10.1145/1181775.1181777

Leßenich O, Siegmund J, Apel S, Kästner C, Hunsen C (2018) Indicators for merge conflicts in the wild:
survey and empirical study. Autom Softw Eng 25(2):279–313

Nagappan M, Zimmermann T, Bird C (2013) Diversity in software engineering research. In: Proceedings
of the 2013 9th Joint Meeting on Foundations of Software Engineering, ACM, ESEC/FSE 2013, pp
466–476. http://doi.acm.org/10.1145/2491411.2491415

Potvin R, Levenberg J (2016) Why google stores billions of lines of code in a single repository. Commun
ACM 59:78–87. http://dl.acm.org/citation.cfm?id=2854146

Rocha T, Borba P (2019) Online Appendix. https://thaisabr.github.io/conflict-risk-prediction-study-site/,
Accessed: Jan 2021

Rocha T, Borba P, Santos JP (2019) Using acceptance tests to predict files changed by programming tasks. J
Syst Softw 154:176–195

Salton G, McGill MJ (1986) Introduction to Modern Information Retrieval. McGraw-Hill, Inc., New York
Sarma A, Redmiles D, van der Hoek A (2012) Palantı́r: Early detection of development conflicts arising from

parallel code changes. IEEE Trans Softw Eng 38(4):889–908
Smart J (2014) BDD in Action: Behavior-Driven Development for the Whole Software Lifecycle. Manning

Publications Company, https://booktitles.google.com.br/booktitles?id=2BGxngEACAAJ
de Souza CRB, Redmiles D, Dourish P (2003) “breaking the code”, moving between private and public work

in collaborative software development. In: Proceedings of the 2003 International ACM SIGGROUP
Conference on Supporting Group Work, ACM, GROUP ’03, pp 105–114

Stray V, Sjøberg DI, Dybå T (2016) The daily stand-up meeting: A grounded theory study. J Syst Softw
114:101–124. https://doi.org/10.1016/j.jss.2016.01.004. https://www.sciencedirect.com/science/article/
pii/S0164121216000066

Thompson C, Murphy G (2014) Recommending a starting point for a programming task: An initial investi-
gation. 4th International Workshop on Recommendation Systems for Software Engineering, RSSE 2014
- Proceedings, https://doi.org/10.1145/2593822.2593824

Ying ATT, Murphy GC, Ng R, Chu-Carroll MC (2004) Predicting source code changes by mining change
history. IEEE Trans Softw Eng 30(9):574–586

Zampetti F, Di Sorbo A, Visaggio CA, Canfora G, Di Penta M (2020) Demystifying the adop-
tion of behavior-driven development in open source projects. Inf Softw Technol 123:106311–0.
https://doi.org/10.1016/j.infsof.2020.106311. https://www.sciencedirect.com/science/article/pii/
S095058492030063X

https://martinfowler.com/bliki/FeatureToggle.html
https://martinfowler.com/bliki/FeatureBranch.html
http://dl.acm.org/citation.cfm?id=2337223.2337264
https://arxiv.org/abs/1702.01715
https://devops.com/feature-branching-vs-feature-flags-whats-r ight-tool-job/
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://doi.org/10.1145/1181775.1181777
http://doi.acm.org/10.1145/2491411.2491415
http://dl.acm.org/citation.cfm?id=2854146
https://thaisabr.github.io/conflict-risk-prediction-study-site/
https://booktitles.google.com.br/booktitles?id=2BGxngEACAAJ
https://doi.org/10.1016/j.jss.2016.01.004
https://www.sciencedirect.com/science/article/pii/S0164121216000066
https://www.sciencedirect.com/science/article/pii/S0164121216000066
https://doi.org/10.1145/2593822.2593824
https://doi.org/10.1016/j.infsof.2020.106311
https://www.sciencedirect.com/science/article/pii/S095058492030063X
https://www.sciencedirect.com/science/article/pii/S095058492030063X


   27 Page 36 of 36 Empir Software Eng           (2023) 28:27 

Zimmermann T, Weisgerber P, Diehl S, Zeller A (2004) Mining version histories to guide software changes.
In: Proceedings of the 26th International Conference on Software Engineering. IEEE Computer Society,
Washington, pp 563–572. ICSE ’04, http://dl.acm.org/citation.cfm?id=998675.999460

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

http://dl.acm.org/citation.cfm?id=998675.999460

	Using acceptance tests to predict merge conflict risk
	Abstract
	Introduction
	Motivating Example
	Research Questions
	Research Question 1 (RQ1): Are Tasks with Non-Disjoint TestI Interfaces Associated with Higher Merge Conflict Risk?
	Research Question 2 (RQ2): How Often Does TestI Predict Conflict Risk Between Two Tasks?
	Research Question 3 (RQ3): Is the Intersection Size Between Two TestI Interfaces Proportional to the Number of Files Changed in Common by the Corresponding Tasks?
	Research Question 4 (RQ4): Is TestI a More Correct and Complete Predictor of Conflict Risk than TextI?
	Research Question 5 (RQ5): Does a Predictor Based on TestI Intersection Outperform a Predictor Based on TestI Similarity?
	Research Question 6 (RQ6): Are Tasks with Non-Disjoint TestI Interfaces Associated with Higher Merge Conflict Risk in MVC Slices?

	Study Setup
	Initial Project Selection
	Task Extraction and Further Project Selection
	Collecting Task Data and Further Project Selection
	Task pair sample

	Results
	RQ1: Are Tasks with Non-Disjoint TestI Interfaces Associated with Higher Merge Conflict Risk?
	Tasks with Non-Disjoint TestI Interfaces More Likely Modify Files in Common
	Tasks with Non-Disjoint TestI Interfaces are More Strongly Associated with Concurrent Modifications to Ruby and HTML Files

	RQ2: How Often Does TestI Predict Conflict Risk Between Two Tasks?
	A Minimal Intersection Between TestI Interfaces is the Best Predictor of Conflict Risk Between Tasks
	The Prediction of Conflict Risk is Better When Considering All Files Concurrently Modified by the Tasks
	For some Projects, Discarding Test Preconditions when Computing TestI Interfaces Might Benefit the Prediction of Conflict Risk
	The Intersection Between TestI Interfaces Might Predict Conflict Risk, Even When it Does Not Predict the Potential Conflicting Files

	RQ3: Is the Intersection Size Between Two TestI Interfaces Proportional to the Number of Files Changed in Common by the Corresponding Tasks?
	The Larger the Intersection Between TestI, the Higher the Risk of Merge Conflict Between Tasks

	RQ4: Is TestI a More Correct and Complete Predictor of Conflict Risk than TextI?
	Tasks with Non-Disjoint TextI Interfaces More Likely Change a Common File
	TextI is a More Precise Predictor of Conflict Risk than TestI, but it Predicts Fewer Risks
	A Predictor of Conflict Risk Based on Both TestI and TextI Underperforms a Predictor Based on TestI

	RQ5: A Predictor Based on TestI Intersection is Better than a Predictor Based on TestI Similarity
	RQ6: TestI Cannot Predict Conflict Risk in MVC Slices

	Implications
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Related Work
	Conclusions
	Declarations
	References


