
The Private Life of Merge Conflicts
Marcela Cunha

Centro de Informática
Universidade Federal de Pernambuco

Brasil
mbc3@cin.ufpe.br

Paola Accioly
Universidade Federal do Cariri

Brasil
paola.accioly@ufca.edu.br

Paulo Borba
Centro de Informática

Universidade Federal de Pernambuco
Brasil

phmb@cin.ufpe.br

ABSTRACT
Collaborative development is an essential practice for the success of
most nontrivial software projects. However, merge conflicts might
occur when a developer integrates, through a remote shared repos-
itory, their changes with the changes from other developers. Such
conflicts may impair developers’ productivity and introduce un-
expected defects. Previous empirical studies have analyzed such
conflict characteristics and proposed different approaches to avoid
or resolve them. However, these studies are limited to the anal-
ysis of code shared in public repositories. This way they ignore
local (developer private) repository actions and, consequently, code
integration scenarios that are often omitted from the history of
remote shared repositories due to the use of commands such as git
rebase, which rewrite Git commit history. These studies might
then be examining only part of the actual code integration sce-
narios and conflicts. To assess that, in this paper we aim to shed
light on this issue by bringing evidence from an empirical study
that analyzes git command history data extracted from the local
repositories of a number of developers. This way we can access
hidden integration scenarios that cannot be accessed by analyzing
public repository data as in GitHub based studies. We analyze 95
git reflog files from 61 different developers. Our results indicate
that hidden code integration scenarios are more frequent than the
visible ones. We also find higher conflict rates than previous stud-
ies. Our evidence suggests that studies that consider only remote
shared repositories might loose integration conflict data by not
considering the developer’s local repository actions.

CCS CONCEPTS
• Software and its engineering → Software configuration
management and version control systems.

KEYWORDS
collaborative software development, merge conflicts, empirical soft-
ware engineering, repository mining

ACM Reference Format:
Marcela Cunha, Paola Accioly, and Paulo Borba. 2022. The Private Life of
Merge Conflicts. In XXXVI Brazilian Symposium on Software Engineering
(SBES 2022), October 5–7, 2022, Virtual Event, Brazil. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3555228.3555240

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
SBES 2022, October 5–7, 2022, Virtual Event, Brazil
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9735-3/22/10. . . $15.00
https://doi.org/10.1145/3555228.3555240

1 INTRODUCTION
In a software development environment, team members often work
collaboratively through a shared remote repository. It’s common for
developers to work on tasks independently of each other. Each one
uses their own local copies of a remote project repository. When
a developer concludes a task, it is time to integrate the associated
contributions and conflicts might then occur if developers changed
overlapping areas in a common file. These are called merge con-
flicts [Bird and Zimmermann 2012; Brun et al. 2013; Kasi and Sarma
2013; Mahmood et al. 2020; Perry et al. 1998; Zimmermann 2007],
as opposed to other kind of conflicts that might be detected during
building [Da Silva et al. 2022], testing [Silva et al. 2020], or even at
system production time.

Although many merge conflicts are easy to fix, some may de-
mand significant effort and system knowledge before they can be
resolved. Besides that, there is a risk of a developer incorrectly
resolving a conflict. When this happens, the consequence is the
introduction of unexpected defects in the system [Bird and Zimmer-
mann 2012; McKee et al. 2017]. In fact, such conflicts may impair
developers’ productivity and compromise system quality [Bird and
Zimmermann 2012; McKee et al. 2017; Sarma et al. 2012]. Because
of these negative consequences, and as merge conflicts might of-
ten occur [Bird and Zimmermann 2012; Brun et al. 2013; Kasi and
Sarma 2013; Mahmood et al. 2020; Mens 2002; Perry et al. 1998;
Zimmermann 2007], a number of studies focus on understanding
conflict characteristics, examining different mechanisms for proac-
tive conflict detection [Brun et al. 2011; Guimarães and Silva 2012;
van der Hoek and Sarma 2008], and proposing tools to more ef-
fectively resolve conflicts [Cavalcanti et al. 2017; Clementino et al.
2021; Mens 2002; Nishimura and Maruyama 2016; Tavares et al.
2019]. This topic has been deeply studied in the literature, with the
aim of seeking proper technical and organizational support to avoid
the negative impact of conflicts on development productivity and
software quality. However, evidence in the literature is limited to
detecting and analyzing merge conflicts [Accioly et al. 2018a; Apel
et al. 2011; Cavalcanti et al. 2015; Zimmermann 2007] in shared
remote repositories such as the ones available in GitHub, many of
them considered to be the main project repositories.

By focusing only on merge scenarios visible in shared remote
repositories, these studies ignore local (private) repository actions
and, consequently, integration scenarios that are often omitted
from the history of remote shared repositories due to the use of
commands such as git rebase and squash, which rewrite Git
commit history. This way integration scenarios and conflicts that
locally occur and are resolved in the developers’ private environ-
ment become hidden, that is, are not visible in remote repositories
and, therefore, are not analyzed by these studies. As a consequence,

https://doi.org/10.1145/3555228.3555240
https://doi.org/10.1145/3555228.3555240

SBES 2022, October 5–7, 2022, Virtual Event, Brazil Cunha, Marcela and Accioly, Paola and Borba, Paulo

these studies do not assess the influence that local actions might
have on the occurrence of merge conflicts in remote repositories. In
addition, these studies also miss integration scenarios and conflicts
originated from the use of Git commands (rebase, cherry-pick, etc.)
that perform code integration but leave no trace in remote shared
repository histories. In the case of rebase, for example, it integrates
changes from two branches but rewrites the history so that it’s
linear. As it does not explicitly signal that integration has occurred
through a special (merge) commit, such integrations are not con-
sidered in previous studies. The failure to detect these integration
scenarios might negatively impact research results, as, for instance,
integration and conflict frequency could be higher than what is
actually observed by considering only data from shared remote
repositories.

To assess that, we aim to shed light on this issue by bringing
evidence from an empirical study that analyzes git command history
data extracted from the local (private) repositories of a number of
developers. In particular, this paper contributes with a new study
that differs from what has been presented in the literature in two
main ways: (a) examining developer local repository logs instead
of remote shared repositories, and (b) going beyond git merge
and analyzing additional git code integration commands and the
conflicts they generate. The core idea is to evaluate developer’s
actions in local private repositories to understand their daily work
integration practices, and how these differ from the git merge
only actions visible in shared remote repositories. This way, we
analyze here code integration scenarios that previous merge conflict
studies were not able to analyze. We are then able to reveal here the
private life of merge conflicts,1 and contrast it with the more widely
known public life of merge conflicts, which has often been exposed
by GitHub based studies that appear in the literature [Accioly et al.
2018a,c; Cavalcanti et al. 2017, 2019; Ghiotto et al. 2020; Nguyen
and Ignat 2018].

We do that by applying quantitative and qualitative techniques
to answer our research questions. First, using tools that we devel-
oped, we collect and analyze the local git history reference logs, or
reflogs)2 of 95 private repositories owned by 61 developers. Our
tools are able to identify the different kinds of integration scenarios
mentioned before, and calculate their frequency and other derived
measurements. Second, to understand which factors could influence
the choice of git code integration commands and approaches, we
interviewed 9 (of the 61) developers. Finally, the first author acted
as participant observant [Sedano et al. 2017] in a professional git
based development context where the author works. The author
could observe the developer’s routine related to the Git commands
and the company policy towards the git merge.

According to our sample, hidden code integrations (performed
by commands such as rebase and cherry-pick, or even git merges
that were reverted or erased by subsequent squashes) are much
more (approximately 6 times) frequent than potentially visible code
integrations (performed by git merge and that might reach remote
repositories). We have also observed conflict rates of up to 37%
resulting from git merge, revealing developers that often have to
locally deal with conflicts when invoking git merge in their private
1Hereafter we use the term merge conflict to denote any conflict reported during code
integration time, no matter if using git merge or other git code integration commands.
2https://git-scm.com/docs/git-reflog

repositories. Since many merge conflicts are resolved locally before
the developers synchronize their contributions to shared remote
repositories, we can see no trace of them when analyzing only
remote repositories. The other git code integration commands such
as rebase and cherry-pick also lead to conflicts, with a lower bound
rate of 10% in one private repository in our sample. Such conflicts
are also missed by analyses that focus only on remote repositories,
as rebase and cherry-pick scenarios are not visible at all with remote
only history information. In summary, these results bring evidence
that studies that focus only on GitHub project history might be
losing integration conflict data by not considering the information
in local repositories, reinforcing the need to consider both the public
and the private life of merge conflicts.

2 MOTIVATION AND BACKGROUND
Each code change made by a developer has to be integrated into a
project remote (possibly main) repository to be visible to the rest of
the contributors. However, not all integration attempts are success-
ful. Conflicts can arisewhenmerging the code changes. Studies have
reported that from 10% to 20% of all integration scenarios fail [Brun
et al. 2011; Kasi and Sarma 2013], with some projects achieving rates
of almost 50% [Brun et al. 2011; Zimmermann 2007], but this might
vary depending on project practices and other factors [Accioly et al.
2018a; Apel et al. 2012], with some studies observing no conflicts
resulting from invoking commands like git merge [Accioly et al.
2018a].

All of these empirical studies collect evidence by analyzing public
Github repositories [Accioly et al. 2018a,b; Ahmed et al. 2017; Brun
et al. 2011; Cavalcanti et al. 2015, 2017; Ghiotto et al. 2020; Kasi and
Sarma 2013; Nguyen and Ignat 2018]. Despite bringing significant
evidence for software engineering researchers and practitioners,
these studies suffer from a common threat to validity: all the inte-
gration scenarios they consider come from shared remote project
repositories. These repositories only track integration scenarios
created explicitly by the git merge command. However, there are
other ways to integrate code using Git [Chacon and Straub 2014],
and they do not leave traces in the history of remote repositories.
Besides that, other Git commands might rewrite repository history,
which could then even erase git merge integration scenarios from
the history of remote repositories. So remote repositories reflect
only part of the code integration scenarios and merge conflicts that
developers had to face during a project.

In fact, unlike the merge command, the following commands do
not leave, or can erase, traces of code integration in the history of
remote project repositories: (a) rebase, (b) cherry-pick, (c) squash,
and (d) stash apply, as detailed next. The (a) rebase command is used
to integrate changes from a branch by reapplying them on top of
the committed changes from another branch, which then represents
the new base for the integrated changes. Different from the merge
command, which creates an additional (merge) with the integrated
code, rebase creates new “clone” commits for each commit in the
original rebased branch. This way the rebase command changes
repository history keeping it linear and, therefore, easier to analyze,
as we can see in Figure 1. The drawback of using it is not being
able to identify, in the illustrated case, that Feature was actually
independently developed and only later integrated to Master, as

https://git-scm.com/docs/git-reflog

The Private Life of Merge Conflicts SBES 2022, October 5–7, 2022, Virtual Event, Brazil

the light grey parts of the figure are not visible by inspecting the
repository.

Figure 1: Rebase scenario, via Atlassian. (https://tinyurl.com/
rebasegitcommand).

The (b) cherry-pick command is used to reapply selected changes
(commits) from one branch into another branch. This is similar to
rebase, but in a more constrained way, dealing with commits instead
of branches. The result is also a linear history, leaving no trace that
the reapplied commits are, in fact, copies of commits independently
developed in another branch and only later integrated to the target
branch.

The third command that can hide integration scenarios is (c)
squash, which can, for instance, turn a sequence of commits into
a single commit, joining their changes, but leaving no trace of the
commits in the sequence. The specific scenario in which squash
can hide code integration is when a merge commit is among the
squashed commits. The result is the loss of themerge commit record,
that is, the code integration trace that was left in the original history.

Finally, the Git stash feature allows one to temporarily save
their changes in a stack, and later apply them to a branch with the
command (d) stash apply, effectively integrating code that were
independently developed.

All of these commands represent different code integration situ-
ations that could happen without relying on the merge command;
none of them is visible in remote repositories. Consequently, by
ignoring them, previous studies might be evaluating only a fraction
of the code integration scenarios and the resulting merge conflicts.
Besides that, since previous empirical studies only collect data from
remote repositories, they might even miss conflicts that were de-
tected and solved in a developer’s machine, and never reached a
remote repository.

For this reason, besides remote repositories, studies should also
analyze local repositories of the developers involved in the project.
Such data would enable the investigation of which integration
scenarios developers use more frequently. This way, we would be
able to understand the practices carried out by the development
teams, and their motivations for the approaches chosen to solve the
integration problems. Finally, there would be a possibility to study
the understanding of the factors that may or may not influence
current conflicts and create new solutions to avoid them.

3 METHODOLOGY
The main goal of this paper is to shed some light on the private life
of merge conflicts. We focus on studying developers’ local reposito-
ries to understand a diverse group of code integration scenarios, as
some of them cannot be detected by analyzing only remote repos-
itories. To achieve this goal, we develop tools to mine local code
integration scenarios using Git, evaluate the frequency of each
identified command and investigate the possible reasons that lead
developers to choose particular code integration commands and
strategies. We answer the following research questions:

• RQ1: How frequently developers integrate code using the
merge command?

• RQ2: How frequently developers use commands that hide
integration from the development history?

• RQ3: How frequently merge scenarios end up in conflicts?
And how about the hidden integration scenarios?

• RQ4: Which factors can influence developer choice of Git
integration commands and strategies?

To answer RQ1, RQ2, and RQ3, we measure the frequency of the
integration scenarios we find in local repositories, and how often
they lead to conflicts. We conduct a quantitative and retrospective
study by collecting developers’ local logs, and analyzing them us-
ing scripts that measure the frequency of different Git commands
and the successful and failure code integrations scenarios. For an-
swering RQ4, and understanding which project characteristics lead
to a more significant difference between the public and private
lives of conflicts, we carry on a qualitative study by performing
semi-structured interviews with 9 developers, besides conducting
a participant-observation process [Sedano et al. 2017] including
the software companies that contributed to this research. In this
qualitative study, the first author observed the git usage in the
development environment of one participant company since the
author has worked there since 2018. Also, this author exchanged
emails with a developer from another software company partici-
pant asking about which git command is most used to integrate the
code in the team and if there is company guidance related to this to
the developers. Meanwhile, the second author collected the same
information from a third software company participant during an
informal conversation with the team leader while visiting.

3.1 Study Setup
Sample. To answer the research questions, we use a sample of 95
log files (reference logs, or reflogs)3 belonging to 61 developers. We
collected these files mainly through a website4 that we developed
for this study and that participants used to upload their files. We
used e-mail and social media (mainly LinkedIn, Facebook, and Twit-
ter) to propagate our website and collect voluntary submissions.
Attempting to reach more participants, the authors use their insti-
tutional e-mail to contact managers from companies partners from
the authors’ university and from projects from others universities.
The authors use their professional and personal profiles on social
media to engage independent volunteers by sharing our research
and our website.

3https://git-scm.com/docs/git-reflog
4https://tinyurl.com/privatelifemergeconflictsws

https://tinyurl.com/rebasegitcommand
https://tinyurl.com/rebasegitcommand
https://git-scm.com/docs/git-reflog
https://tinyurl.com/privatelifemergeconflictsws

SBES 2022, October 5–7, 2022, Virtual Event, Brazil Cunha, Marcela and Accioly, Paola and Borba, Paulo

In the end, 4 software companies agreed to participate in this re-
search, with their developers also submitting files using our website.
One company is an open-source software company, where the first
author has worked since 2018. Two companies have projects and
research in partnership with the authors’ university. Finally, the
last software company is specialized in publishing game develop-
ment for computer and mobile devices, and the research participant
agreement was made through one employee who was a student of
the third author.

Of 61 developers, 17 were independent volunteers, and 44 were
volunteers from the software companies we contacted.

Scripts for log analysis. To automatically analyze our dataset, we
implemented a script to identify and count the Git commands of
interest to this study, as discussed in the previous section. The script
takes reflog files as input and generates tables with the occurrences
of the commands and related metrics. Since a developer could have
worked on more than one project or repository, the script aggre-
gates all the log information related to each developer. We decided
to aggregate the data by the developer because it facilitates the
evaluation from an individual perspective view.

Interviews. To complement the log analyses, we conducted semi-
structured interviews with 9 developers from the same software
company. This software company has a project in partnership with
the authors’ university. The interviews were conducted in one after-
noon, and we created an interview script containing 19 questions
to explore the developer experience using Git.

Although this is, in general, considered a small panel, it is ade-
quate for our simpler goal of using the interviews to better under-
stand the results of the log analysis. The interview script begins
with questions to determine whether the developer knows and uses
each Git command analyzed in the study and why they use (or not)
the commands. It then moves forward to questions about how they
usually integrate their code with the shared remote repository and
if they had to deal with merge conflicts.

The last questions ask whether there is any configuration man-
agement and git usage policy or standard in the daily work of the
software teams to integrate code using Git. The interviews were
carried out individually, and we recorded each one of them. The
following is an example of some of the questions we asked in the
interview.

• Do you have experience with or know the rebase command?
• When using it, did you have to deal with any conflicts?
• Have you ever had to deal with conflicts resulting from the
merge command? How did you solve them?

• Is there a workflow pattern in your company to work with
Git?

The study sample, the script code, and the interview script are
available online.5

Observations. Concerning the participant observation analysis, the
first author collected notes while working as an engineer on one
of the software company participants of this study and collected
information by exchanging emails with one developer from an-
other software company participant. The second author collected

5https://tinyurl.com/privatelifemergeconflictsgh

information from a different software company by having informal
conversations with the team leader while visiting. All the informa-
tion collected was related to analyzing if any company has a policy
or guidance toward using git integration commands.

3.2 Git Log Analysis
After studying the Git commands that hide code integration sce-
narios, we know that to answer our research questions we need
to automatically identify these commands using data from local
private repositories.

Command identification. Our strategy is to analyze the local history
of the project, as captured by the local repository reflog file. This
file contains information of all the reference related git actions
performed locally by a developer in its local repository. This file is
automatically saved and updated by Git as the user performs Git
commands.

It is located in the repository’s Git directory and can be found
through the following directory path: “.git/logs/HEAD”. It repre-
sents the reflog of the Git repository, and it is a record of all commits
that were referenced in the repository. This file has an expiry sub-
command that cleans up old or unreachable reflog entries. The
reflog expiration date is set to 90 days by default, but this date can
be configurable. Also, developers can access the reflog through the
command git reflog in the terminal.

For each commit performed by the developer in a local reposi-
tory, Git creates a unique key to reference it, known as an SHA-1
hash [Chacon and Straub 2014]. That way, Git does not lose track
of the repository history. To inform the most recent commit, Git
maintains a pointer known as “HEAD” [Chacon and Straub 2014].
This pointer indicates which branch the developer is in, and the last
performed git command. HEAD is continuously updated automati-
cally by Git, without manual intervention, and this information is
captured in the reflog.

The reflog file consists of a sequence of lines, each representing
a different git action performed by the developer. In each line, it is
possible to observe the following data, as Figure 2 depicts: (1) the
hash of the previous HEAD commit (first number sequence), (2) the
hash of the current HEAD commit (second number sequence), (3)
developer’s Git name, (4) developer’s Git e-mail, (5) the command
performed and (6) linked message.

Figure 2: Reflog file lines.

In Figure 2, we can see that the developer first cloned the reposi-
tory in their local machine. After that, supposing this is the begin-
ning of the project history, they created a first commit. Finally, a
new branch was created and then the developer committed changes
to that secondary branch.

As not all integration commands are clearly represented in this
kind of log file, we manually analyzed a number of files to under-
stand how to obtain the integration scenarios, including those that
do not appear in the main project history. The commands explored

https://tinyurl.com/privatelifemergeconflictsgh

The Private Life of Merge Conflicts SBES 2022, October 5–7, 2022, Virtual Event, Brazil

were the following: (a) merge, (b) rebase, (c) cherry-pick, (d) squash,
and (e) stash apply. The first attempt at identification was made
by reading the log files to differentiate the various types of Git
commands. Soon after, tests were carried out in local repositories
to reproduce the commands mentioned above to recognize how Git
records them in reflog files.

After finishing this analysis, it was possible to identify the oc-
currence of the commands: (a) merge, (b) rebase, (c) cherry-pick,
and (d) squash. The merge command and the cherry-pick command
are identified as shown in Figure 3. The rebase command can be
recorded in two ways: the direct form (Figure 3) and in an interac-
tive (Figure 4). The rebase can also be used together with the pull
action.

Regarding the squash command, Git does not record the squash
with a single line command, but we can identify it through the
interactive rebase. At the interactive rebasing, the developer can
choose a list of commits to perform the squash action.

Figure 3: Reflog lines examples.

Figure 4: Log line using interactive rebase.

The concrete cases illustrated in the figures follow an abstract
and consistent pattern that applies to other instances of the invoked
commands, allowing us to uniformly process reflog patterns by
matching these patterns.

Regarding the stash apply command, we could not recognize it
in the log file history. No trace of this command is left in reflogs.
So we do not consider here all possible integration scenarios, but
the ones we consider are still sufficient to support our conclusions.

Integration identification. Since all the identified Git commands
were described in the previous section, we must discuss which
integration scenarios we could extract from them.

The scenario that we are seeking is the integration one. Some-
times, the integration can act as a fast-forward action when we
run an integration command. A fast-forward integration is when
Git moves the pointer of the branch forward. An example is when
you try to merge one commit with a commit that can be reached
by following the first commit’s history, and Git moves the pointer
forward because there is no divergent work to merge [Chacon and
Straub 2014]. This scenario is not interesting for our research be-
cause it is not about a merge scenario but a branch update. This
means that there is nothing to integrate, and the branch pointer
will move straight forward, resulting in a linear history. Since this
scenario does not create a merge commit in the repository history,
we don’t count this scenario in our study, as desired.

When integrating code, it can be a successful or failed action.
If the integration happens without conflict and it was not a fast-
forward action, we count it as a successful scenario. When merge

conflicts occur, the user has three options: try to fix the conflicts and
continue the integration process; skip, meaning that you will bypass
the commit that caused the failure; and abort, meaning that you
will undo the operation. Regardless of the decision made in such
a situation, the conflict makes us count this as a failed integration
scenario. For each integration scenario recognized in the Git log
analysis, we identify the action results to count how many times
the integration was successful or not.

Concerning the successful integration, there are scenarios in
which we could not differentiate them from the fast-forward be-
cause the log line of both scenarios had the same characteristics.
It means that our script is counting both scenarios as successful
integrations. This happened with the cherry-pick and the squash
commands. The consequence is an overestimated result for these
commands when measuring the successful integration.

Regarding the failed integration, there are scenarios in which
we could not identify the abort or skip scenarios in the studied
commands because the log file does not record this information.
This happened with all the analyzed commands except for the
rebase command done interactively. It means that our script is
losing merge conflict data since it only identifies one of the three
pieces of evidence representing that the command failed by a merge
conflict. The consequence is underestimated result for most of the
commands when measuring the failed integration.

A failure integration scenario of the merge and the cherry-pick
commands can be identified with a single line. However, it is differ-
ent with the rebase and squash commands because is identified in a
block of commands. Figure 5 shows an example of these commands.

Figure 5: Failed squash and rebase scenario.

Since all integration scenarios could not be identified correctly,
some of our identified scenarios indicate an approximated result.
Some results are overestimated, meaning that the actual result could
be smaller. This happens with the successful integration scenarios.
Meanwhile, others results are underestimated, meaning that the
actual result could be bigger. This occurs with the failed integration
scenarios.

Therefore, the number of occurrences will not be exact for some
commands and analyses, which we can only provide estimations
in this study. We can observe the summary of the estimations in
Table 1.

4 RESULTS
Following the study design presented in the previous section, we
analyze 95 Git log files from 61 developers to investigate the fre-
quency of integration commands in their local repositories. From
61 developers, we collected a total of 34504 Git commands. We now
present the results of our analysis for each research question.

SBES 2022, October 5–7, 2022, Virtual Event, Brazil Cunha, Marcela and Accioly, Paola and Borba, Paulo

Table 1: The identified integration scenarios of the Git com-
mands. Arrows indicate whether the number is underesti-
mated (↑, meaning the numbers should be bigger in practice)
or overestimated (↓)

Git command Successful Failed
Merge = ↑

Cherry-Pick ↓ ↑
Squash ↓ ↑
Rebase
- Normal = ↑

- Interactive = =
- Pull –rebase = ↑

4.1 RQ1: How frequently developers integrate
code using the merge command?

To answer RQ1, our script identifies merge occurrences for each
developer. This frequency is the addition of the successful and the
failed scenarios. Since our script could not identify the abort or
skip scenarios in the studied commands (see Section Methodol-
ogy), our result represents the underestimated frequency of merge
occurrences compared to the developer’s actual numbers.

From 34504 Git commands, 4131 of them were Git integration
scenarios, representing 12% of all actions. Regarding the merge
command, 548 scenarios were identified, representing only 13.3%
of the 4131 integration scenarios. The major part of the integration
scenarios, that is 86.7%, is carried out by git code integration com-
mands such as git rebase and squash, which leave no trace on
remote shared repositories.

We also observe that the percentage of merge commands sub-
stantially varies depending on the developer, as can be seen in the
top part of Figure 6, which shows the distribution per developer.
This graph presents the distribution of the percentage of merge
command scenarios in relation to the total of integration commands,
which includes both the visible integration commands (merge) and
the hidden integration command (rebase, cherry-pick, and squash).

Figure 6: Beanplot Distribution of Integration Frequency.

In the top part of Figure 6, we can see that the merge action is
more dispersed in the extremes of the graph, meaning that there are
developers that often use this integration command, whereas others

rarely use it. There are only a few points in the middle of the graph,
showing that these developers do not seem to have a well-defined
preference for visible or hidden integration commands.

Result 1: The frequency of code integration scenarios created
by the git merge command is significantly smaller than the num-
ber of integration scenarios created by other git code integration
commands, representing only 13.3% of the captured integration
scenarios in our sample. However, it can substantially vary per
developer, with some developers heavily relying on this command
for code integration. This result represents an underestimated fre-
quency of the merge occurrences.

4.2 RQ2: How frequently developers use
commands that hide integrations from the
development history?

Using the same method described to answer RQ1, we compute the
frequency of the commands that hide integrations. In this question,
our script considers the occurrence of the following commands:
rebase, cherry-pick and squash. To answer this question, we must
count the successful and failed integrations scenarios for these
commands.

Since our script could not identify some scenarios, such as fast-
forward integration, skip or abort scenarios, for all the hidden
integration commands (see Section Methodology), our result rep-
resents an estimated frequency of hidden integration commands
when compared to the developer’s actual numbers.

From 34504 Git commands, 4131 of them were Git integration
scenarios, representing 12% of all actions. If we analyze just the
integration scenarios, the hidden scenarios represent 86.7%. Con-
cerning only hidden integration scenarios identified, rebase was
the most used command among the developers (65.7%), followed
by cherry-pick (30.5%) and squash (3.8%). According to our sample,
hidden integration is more frequent than the visible ones (13.3%) in
the private repositories.

Although these commands frequencies are estimated numbers,
our results maintain the same direction. Because, even in the worst
scenario, the results would follow the same direction because the
frequency of the rebase command is four times bigger than the
frequency of the merge command in our sample. So the use of ap-
proximations, in this case, might affect the exact reported numbers,
but not the overall conclusion and direction of the result.

This result varies per developer, having a similar behavior as
the merge. As shown in the bottom part of Figure 6, the hidden
integration distribution varies, showing more occurrences in the
extremes sides. Comparing both distributions in the previous figure,
we can see that they complement each other.

Result 2: According to our sample, hidden integration scenarios
are more frequent than the visible ones (13.3%) in the private repos-
itories, representing 86.7%. However, it can substantially vary per
developer. The most used command among the hidden integrations
is the rebase.

The Private Life of Merge Conflicts SBES 2022, October 5–7, 2022, Virtual Event, Brazil

4.3 RQ3: How frequently merge scenarios end
up in conflicts? And how about the hidden
integration scenarios?

According to existing studies [Accioly et al. 2018a; Brun et al. 2013,
2011; Cavalcanti et al. 2015; Kasi and Sarma 2013] onmerge conflicts
and resolutions in public repositories, it has been reported that from
5% to 20% of all merges fail, with some projects achieving rates of
almost 50% [Brun et al. 2011; Zimmermann 2007]. But, what about
the merge conflict rate in the developer’s local repositories?

Examining our sample, we have a total of 548 merges identified.
Among these merges, 204 (37.2%) failed, that is, ended up having at
least one merge conflict. Let us analyze the distribution of failed
merges frequency by developer, as Figure 7 shows.

Analyzing Figure 7, we notice that the median of this graph is
almost on axis 0 andmany occurrences of failure appear throughout
the distribution, meaning that developers had failed when merging
in different proportions compared to each other. Remember that
we do not count the merge conflict scenarios followed by the abort
action due to our script limitation for identifying this action (see
SectionMethodology). Because of this, this result represents a lower
bound number of failed merge scenarios.

Figure 7: Beanplot Distribution of Failed Merge Frequency.

Our results show a higher merge conflict rate in the developer’s
local repository (37.2%) than studies that analyzed merge scenarios
from the shared remote repository (5–20%). Still, this result should
be interpreted as a complement to future analyses because we are
just demonstrating that merge conflicts are happening locally and
maybe with a higher frequency.

At the same time that merge is less frequent in local repositories,
it tends to fail more often. Thus, this evidence suggests that studies
might be losingmerge conflict data by not analyzing the developer’s
private repository. Such merge commits might not appear in the
shared remote repository history due to the use of Git commands
that rewrites history, such as rebase and squash.

In addition, we have identified 3583 hidden integration scenarios
in our sample. 405 of them ended up in conflicts, representing
11.3% of the total. Because of the script limitation, this result also

represents the lower bound number of conflict scenarios. Hence,
we can say that the hidden scenarios’ situation is the opposite of
the merge because it is more frequent in local repositories, but it
tends to fail less.

This result represents an underestimated frequency of failed
integration commands. But, since one of our research goals is to
inform that studies are losing merge conflict data by not analyzing
the developer repository, reporting a minimum frequency of code
integration conflict would not invalidate our result. No matter how
imprecise the approximation is in this case, it’s still solid evidence
that studies are losing merge conflict data by not analyzing the
developer repository. The exact percentage of loss, however, is not
accurate.

Result 3: Our results show that hidden and visible code integra-
tions happen in the developers’ local repository and both could
end up in merge conflicts (hidden integrations with lower bound
of 11.3% and visible integrations with lower bound of 37.2%). These
conflicts are resolved locally before the developers synchronize
their contributions to shared remote repositories, so we can see no
trace of them when analyzing only remote repositories. In resume,
these results bring evidence that studies that focus only on GitHub
project history might be losing integration conflict data by not con-
sidering the information in local repositories, reinforcing the need
to consider both the public and the private life of merge conflicts.

4.4 RQ4: Which factors can influence developer
choice of Git integration commands and
strategies??

Since the choice of git code integration commands and strategies
can significantly impact the degree of integration scenarios and
merge conflicts that are missed by code integration studies that
focus only on shared remote repositories, it’s important to inves-
tigate why developers choose a particular integration command
or strategy in their work routine. In particular, it’s important to
identify which factors influence their choice. To understand that
and answer this research question, we conducted semi-structured
interviews with nine developers from the same company, collected
additional information by exchanging emails with other developers,
and performed a participant observation study with one software
company.

We also performed an additional Git reflog analysis to comple-
ment the interviews by investigating secondary research questions
that were derived from the analysis of the interview transcripts.
This analysis groups the developers into two categories: those with
a high visible integration frequency, and those with a high hidden
integration frequency. We grouped only developers that use the
same code integration strategy (visible or hidden) in more than
70% of the situations in which they have to integrate code. This
way we leave out of the analysis only four developers that adopt a
less unbalanced mix of strategies. After the grouping, we analyzed
which company each developer works for, comparing it with the
information collected from interviews and the participant observa-
tions notes. This way we can shed light on which aspects are more
likely to affect code integration command or strategy choice.

Among the 61 developers from our sample, 25 have visible inte-
gration frequency ranging from 79% to 100%, constituting one of

SBES 2022, October 5–7, 2022, Virtual Event, Brazil Cunha, Marcela and Accioly, Paola and Borba, Paulo

the groups just mentioned. Of those 25, 19 developers only invoked
visible integration commands, whereas 6 developers invoked both
merge commands and hidden integration commands. We find that
all employees of 2 specific software companies belong to this group.
All 9 interviewed developers belong to this group, and all work at
the same company. The interviews showed that many of them are
not sufficiently familiar with the git integration commands that
lead to hidden integration. They are also not aware of any company
guidance for using specific git integration commands in their work
routine. Regarding the other software company representing this
group, we learn from the emails exchange that there is a company-
wide recommendation for using the merge command, instead of
rebase, for example. This is a light recommendation, though, not
being mandatory to use the git merge command.

The second group consists of 32 developers having hidden in-
tegration frequency ranging from 73% to 100%. From this total,
26 developers only invoked hidden integration commands, and
six invoked also the merge command besides the hidden integra-
tion commands. We find that all employees of 2 specific software
companies belong to this group.

Based on our conversation with the team leaders, and experience
from working as an engineer at one of the software companies
participating in this study, we know that one of the companies has
strict guidelines for not allowing the use of the git merge command.
In contrast, the other company recommends using rebase instead
of merge, but not in a mandatory way.

Outside the two polarized groups, only four developers per-
formed both kinds of integration with balance. Those developers
do not belong to any software company described before. Due to
lack of information, we cannot inform the factors that influence
their choice of balanced integration commands.

Result 4: Git experience and company guidance might influence
which Git integration command or strategy a developer chooses.
For example, a developer less fluent in Git may prefer to use the
merge command, as it is often considered simpler.

5 DISCUSSION
Before this study, our main questions were whether hidden integra-
tion scenarios happened frequently, and why developers preferred
to use such commands instead of git merge. Based on our results,
hidden integration scenarios might occur even more frequently
than visible ones; 6 times more frequently in our sample. This is an
alarming difference. We expect that similar or even greater differ-
ences can be observed in contexts that recommend or demand the
use of commands such as git rebase. We also bring evidence that
hidden integration scenarios lead to conflicts as well, although in a
smaller rate than can be observed from the visible scenarios in our
sample.

Such expectations are reinforced by the analysis of the performed
interviews, which show that the motivation to adopt different code
integration strategies might come from personal Git experiences or
simply from company guidance. This way, our study brings impli-
cations for both software engineering researchers and practitioners,
as we detail further.

Previous empirical studies analyzemerge conflicts characteristics
based only on the history of the main GitHub repository [Accioly

et al. 2018a,b; Ahmed et al. 2017; Cavalcanti et al. 2015, 2017; Ghiotto
et al. 2020; Nguyen and Ignat 2018], that is, a public shared remote
repository. Our results suggest that these studies might be missing
both integration scenarios and merge conflicts. By not including
the developer’s local repositories, these studies are analyzing and
reporting just a fraction of the actual integration scenarios and
conflicts that were faced by developers working in those projects.
So at least part of the results in those studies should be interpreted
as lower bounds, for example, of how often integration conflicts
occur in practice. A few studies even list that as a possible threat,
but does not bring further evidence of the problem nor give an idea
of the dimension of the threat, as we do here.

Detailed further work is then necessary to understand how pre-
cisely each previous work is affected by the findings we present
here. Some might even not be affected at all, if their sample consists
only of projects that demand developers to use only git merge for
code integration; but, given how projects are often selected for
these studies, we would expect such situation to be rare. Others
might not be affected because their outcomes are not dependent
on the existence of hidden integration scenarios; this is certainly
not the case of outcomes that are related to conflict frequencies or
causes, for example. To understand how each work is affected, a
researcher has to analyze carefully the study outcomes and how
they could be potentially impacted by the existence of hidden inte-
gration scenarios and conflict. To measure that with precision, in
the cases of risk, one should have access to the reflog files from the
developers of the analyzed repositories.

6 THREATS TO VALIDITY
Construct Validity. In order to detect hidden merge scenarios, we
decided to analyze the developer’s Git reflog files. Git creates the
reflog file locally when the developer clones or starts a new repos-
itory using Git. However, the reflog file gets deleted when the
developer deletes the project from the local machine. Even if the
developer clones again the previously deleted project, the reflog file
old content cannot be recovered. Besides that, Git limits the size
of the reflog file. Meaning that it erases the reflog content at some
point so that future Git actions can be saved. All those situations
we describe mean that we might not be analyzing the full history
of the developer’s action in a repository. This, nevertheless, does
not compromise our results showing that studies that focus only
on shared remote repositories might be missing code integration
scenarios and conflicts. In fact, since we might be considering only
part of the local repository history, we know that the studies could
be missing more than we report here, but not less.

Since our chosen strategy to identify hidden integration sce-
narios depends on reflog files, we created a script responsible for
detecting these scenarios. Still, we could not detect all the successful
and failed scenarios. To minimize the threat, we specify whether
the numbers associated with a particular command are underesti-
mated or overestimated. Nevertheless, even with estimated results,
we could inform the ranges of command occurrence and therefore
analyze potential worst and best situations.

Internal Validity. A potential threat is our approach to identifying
hidden integration scenarios. We implemented a script responsi-
ble for determining the occurrence of those actions. The script

The Private Life of Merge Conflicts SBES 2022, October 5–7, 2022, Virtual Event, Brazil

reads each reflog file line and detects which Git command that line
corresponds to. We implemented this script based on our manual
analysis while we were identifying the syntactic patterns of the Git
commands in the Git log files. As a result, the script may not be
counting the exact number of occurrences of the Git commands
that hide integration. The reason can be a specific scenario that
does not appear in the log file or a new pattern of a particular Git
command that we did not implement in the script. We made manual
analysis in different log files before running the study to reduce
this threat.

External Validity. In this research, we collect our data via a website.
This website was available for voluntary submission. This aspect
could lead our study to be impacted by self-selection bias, which
would only represent a particular subset of people who were com-
fortable participating. However, more than half of our sample came
from developers teams from software companies we contacted with,
and some of these developers had the option to self decide if they
would participate because their manager asked them to partici-
pate. Therefore, we reduce the threat of self-selection bias. Another
threat is that our semi-structured interviews were with developers
from the same software company; so our answer for RQ4 is strongly
associated with this company context.

Most reflog files collected in this study came from 4 different
software companies described in the previous sections. Although
our research does not restrict any Git projects from participating
in the study, it was not possible to collect a significant number of
log files. The reason provided by other companies was the sensitive
information that could be in the commit message or even in the
branch name provided by the developer. Even though our research
would not analyze this kind of information, some companies refused
to share their log files. Thus, our sample might not be large and
representative enough to generalize our results. For future work,
we could work on increasing the sample size.

7 RELATEDWORK
Previous studies provide evidence about collaborative software
development. As mentioned earlier, those studies focus on analyz-
ing merge conflicts and their resolution. For example, Ghiotto et
al. [Ghiotto et al. 2020] focus on analyzing merge conflicts of 2731
open-source Java projects that resulted in recommendations for
future merge techniques that could help resolve certain types of
conflicts. Likewise, other studies [Ahmed et al. 2017; Brun et al.
2011; Kasi and Sarma 2013; Le Nguyen and Ignat 2017] also studied
large open-source projects with a similar purpose.

In contrast, Ji et al. [Ji et al. 2020] investigate the invisible integra-
tions performed by the rebase command. This study examines how
developers rebase their working branches in the pull requests. They
collect 82 Java repositories from GitHub and identify 51,183 rebase
scenarios from the pull requests of these repositories. According
to this study, rebasing is widely used in pull requests because it
can relieve the burden of reviewing changes and keep the commit
history clean. Their result shows that conflicts arise in 24.3%-26.2%
of rebases. However, they claim no significant difference between
the possibilities of textual conflicts arising in rebases and merges.
Furthermore, one of their main contributions is that developers

adopt similar strategies shown in existing studies on merges when
resolving textual conflicts on rebases.

Ji et al.’s study was the only one we found so far that analyzed
hidden integration scenarios. In comparison with our research, our
work goes further by identifying other hidden integrations scenar-
ios beyond the rebase: cherry-pick and squash. Besides that, we
collect our data through the developer’s local history. Compared to
our results, we collected and compared merge scenarios involving
three different hidden integration scenarios. While the prior study
only collects the rebase scenarios and compares their results with
selected studies. One of their findings suggests no difference in
the conflict rate between rebases and merges, showing that tex-
tual conflicts arise in 24.3–26.2% of rebases. This result diverges
from ours because merge conflict (lower bound of 37% / ↑37%) is
more frequent than the conflicts in the hidden integration scenarios
(lower bound of 10% / ↑10%) in our sample. In this way, our results
complement theirs since conflicts that developers resolve locally
may not appear in the pull request history.

Related to the influence from choosing between different Git
integration commands, our study found that company guidance can
be an essential factor of influence because it can lead or prohibit
the usage of a specific command. The other factor was personal
Git experience, making less experienced developers choose easier
commands, such as merge, instead of rebase. Meanwhile, Ji et al.
investigate when and why developers decide to rebase branches in
pull requests with a somewhat different focus.

Even though we have different approaches, we could be one of
the first studies to research other ways to integrate code besides
merge and enhance their importance to provide comprehensive
insights on software merging.

8 CONCLUSIONS
In this paper, we report a quantitative and a qualitative study to
measure the frequency of the integration scenarios in developer’s
local repositories. The main difference from previous merge studies
was the detection of hidden integration scenarios, that is, scenarios
that do not appear in the shared remote repository history. In order
to do so, we collected a total of 95 logs from 61 different developers
and analyzed the actions recorded in their local repository log files.
We implemented a script that counts and computes the metrics used
to answer our research questions. Additionally, we conducted semi-
structured interviews with nine developers to learn more about
their habits while using Git to merge code.

Our results indicate that hidden code integrations are much
more (approximately 6 times) frequent than potentially visible code
integrations (performed by git merge and that might reach remote
repositories). Additionally, we observed conflict rates of up to 37%
resulting from git merge, revealing developers that often have
to locally deal with conflicts when invoking git merge in their
private repositories. Since many merge conflicts are resolved locally
before the developers synchronize their contributions to shared
remote repositories, we can see no trace of them when analyzing
only remote repositories. The other git code integration commands
also lead to conflicts, with a lower bound rate of 10% in one private
repository in our sample. Such conflicts are also missed by analyses
that focus only on remote repositories. In resume, these results bring

SBES 2022, October 5–7, 2022, Virtual Event, Brazil Cunha, Marcela and Accioly, Paola and Borba, Paulo

evidence that studies that focus only on GitHub project history
might be losing integration conflict data by not considering the
information in local repositories, reinforcing the need to consider
both the public and the private life of merge conflicts.

Regarding the factors that could influence the choice between the
integration ways of code, we find that Git experience and company
guidance can affect which Git integration command a developer
chooses. We plan to explore how the developer’s local actions could
influence the conflicts from the project’s shared remote repository
in future work.

ARTIFACT AVAILABILITY
Our research data is available in a GitHub repository.6

ACKNOWLEDGMENTS
We thank the practitioners for participating in the study and the
anonymous reviewers. We also thank INES (National Institute of
Software Engineering), FACEPE (IBPG-28-1.3/20 and IBPG-567-
1.03/22) and CNPq (309235/2021-9).

REFERENCES
Paola Accioly, Paulo Borba, and Guilherme Cavalcanti. 2018a. Understanding Semi-

Structured Merge Conflict Characteristics in Open-Source Java Projects (Journal-
First Abstract). Association for Computing Machinery, New York, NY, USA, 955.
https://doi.org/10.1145/3238147.3241983

Paola Accioly, Paulo Borba, and Guilherme Cavalcanti. 2018b. Understanding Semi-
Structured Merge Conflict Characteristics in Open-Source Java Projects (Journal-
First Abstract). Association for Computing Machinery, New York, NY, USA, 955.
https://doi.org/10.1145/3238147.3241983

Paola Accioly, Paulo Borba, Léuson Silva, and Guilherme Cavalcanti. 2018c. Analyz-
ing Conflict Predictors in Open-Source Java Projects. In Proceedings of the 15th
International Conference on Mining Software Repositories (Gothenburg, Sweden)
(MSR ’18). Association for Computing Machinery, New York, NY, USA, 576–586.
https://doi.org/10.1145/3196398.3196437

Iftekhar Ahmed, Caius Brindescu, Umme Ayda Mannan, Carlos Jensen, and Anita
Sarma. 2017. An Empirical Examination of the Relationship between Code Smells
and Merge Conflicts. In Proceedings of the 11th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (Markham, Ontario, Canada)
(ESEM ’17). IEEE Press, 58–67. https://doi.org/10.1109/ESEM.2017.12

Sven Apel, Olaf Leßenich, and Christian Lengauer. 2012. Structured merge with
auto-tuning: balancing precision and performance. In 2012 Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineering. 120–129.
https://doi.org/10.1145/2351676.2351694

Sven Apel, Jörg Liebig, Benjamin Brandl, Christian Lengauer, and Christian Kästner.
2011. Semistructuredmerge. In Proceedings of the 19th ACM SIGSOFT symposium and
the 13th European conference on Foundations of software engineering - SIGSOFT/FSE
'11. ACM Press. https://doi.org/10.1145/2025113.2025141

Christian Bird and Thomas Zimmermann. 2012. Assessing the Value of Branches with
What-If Analysis. In Proceedings of the ACM SIGSOFT 20th International Sympo-
sium on the Foundations of Software Engineering (Cary, North Carolina) (FSE ’12).
Association for Computing Machinery, New York, NY, USA, Article 45, 11 pages.
https://doi.org/10.1145/2393596.2393648

Yuriy Brun, Reid Holmes, M.D. Ernst, and David Notkin. 2013. Early Detection of
Collaboration Conflicts and Risks. Software Engineering, IEEE Transactions on 39
(10 2013), 1358–1375. https://doi.org/10.1109/TSE.2013.28

Yuriy Brun, ReidHolmes,Michael D. Ernst, andDavid Notkin. 2011. Proactive Detection
of Collaboration Conflicts. In Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of Software Engineering (Szeged,
Hungary) (ESEC/FSE ’11). Association for Computing Machinery, New York, NY,
USA, 168–178. https://doi.org/10.1145/2025113.2025139

Guilherme Cavalcanti, Paola Accioly, and Paulo Borba. 2015. Assessing Semistructured
Merge in Version Control Systems: A Replicated Experiment. In 2015 ACM/IEEE In-
ternational Symposium on Empirical Software Engineering and Measurement (ESEM).
1–10. https://doi.org/10.1109/ESEM.2015.7321191

Guilherme Cavalcanti, Paulo Borba, and Paola Accioly. 2017. Evaluating and Improving
Semistructured Merge. Proc. ACM Program. Lang. 1, OOPSLA, Article 59 (oct 2017),
27 pages. https://doi.org/10.1145/3133883

6https://tinyurl.com/privatelifemergeconflictsgh

Guilherme Cavalcanti, Paulo Borba, Georg Seibt, and Sven Apel. 2019. The Impact of
Structure on Software Merging: Semistructured Versus Structured Merge. In 2019
34th IEEE/ACM International Conference on Automated Software Engineering (ASE).
1002–1013. https://doi.org/10.1109/ASE.2019.00097

Scott Chacon and Ben Straub. 2014. Pro Git (2nd edition ed.). Apress.
Jônatas Clementino, Paulo Borba, and Guilherme Cavalcanti. 2021. Textual Merge Based

on Language-Specific Syntactic Separators. Association for Computing Machinery,
New York, NY, USA, 243–252. https://doi.org/10.1145/3474624.3474646

Léuson Da Silva, Paulo Borba, and Arthur Pires. 2022. Build Conflicts in the Wild. J.
Softw. Evol. Process 34, 4 (apr 2022), 28 pages. https://doi.org/10.1002/smr.2441

Gleiph Ghiotto, Leonardo Murta, Márcio Barros, and André van der Hoek. 2020. On
the Nature of Merge Conflicts: A Study of 2,731 Open Source Java Projects Hosted
by GitHub. IEEE Transactions on Software Engineering 46, 8 (2020), 892–915. https:
//doi.org/10.1109/TSE.2018.2871083

Mário Luís Guimarães and António Rito Silva. 2012. Improving Early Detection of
Software Merge Conflicts. In Proceedings of the 34th International Conference on
Software Engineering (Zurich, Switzerland) (ICSE ’12). IEEE Press, 342–352.

Tao Ji, Liqian Chen, Xin Yi, and Xiaoguang Mao. 2020. Understanding Merge Conflicts
and Resolutions in Git Rebases. In 2020 IEEE 31st International Symposium on
Software Reliability Engineering (ISSRE). 70–80. https://doi.org/10.1109/ISSRE5003.
2020.00016

Bakhtiar Khan Kasi and Anita Sarma. 2013. Cassandra: Proactive Conflict Minimiza-
tion through Optimized Task Scheduling. In Proceedings of the 2013 International
Conference on Software Engineering (San Francisco, CA, USA) (ICSE ’13). IEEE Press,
732–741.

Hoai Le Nguyen and Claudia-Lavinia Ignat. 2017. Parallelism and conflicting changes
in Git version control systems. In IWCES’17 - The Fifteenth International Workshop
on Collaborative Editing Systems. Portland, Oregon, United States. https://hal.inria.
fr/hal-01588482

Wardah Mahmood, Moses Chagama, Thorsten Berger, and Regina Hebig. 2020. Causes
of merge conflicts: a case study of ElasticSearch. 1–9. https://doi.org/10.1145/
3377024.3377047

Shane McKee, Nicholas Nelson, Anita Sarma, and Danny Dig. 2017. Software Prac-
titioner Perspectives on Merge Conflicts and Resolutions. In 2017 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME). 467–478.
https://doi.org/10.1109/ICSME.2017.53

T. Mens. 2002. A state-of-the-art survey on software merging. IEEE Transactions
on Software Engineering 28, 5 (2002), 449–462. https://doi.org/10.1109/TSE.2002.
1000449

Hoai Le Nguyen and Claudia-Lavinia Ignat. 2018. An Analysis of Merge Conflicts and
Resolutions in Git-Based Open Source Projects. Computer Supported Cooperative
Work (CSCW) 27 (12 2018). https://doi.org/10.1007/s10606-018-9323-3

Yuichi Nishimura and Katsuhisa Maruyama. 2016. Supporting Merge Conflict Resolu-
tion by Using Fine-Grained Code Change History. In 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), Vol. 1. 661–
664. https://doi.org/10.1109/SANER.2016.46

D.E. Perry, H.P. Siy, and L.G. Votta. 1998. Parallel changes in large scale software
development: an observational case study. In Proceedings of the 20th International
Conference on Software Engineering. 251–260. https://doi.org/10.1109/ICSE.1998.
671134

Anita Sarma, David F. Redmiles, and André van der Hoek. 2012. Palantir: Early
Detection of Development Conflicts Arising from Parallel Code Changes. IEEE
Transactions on Software Engineering 38, 4 (2012), 889–908. https://doi.org/10.1109/
TSE.2011.64

Todd Sedano, Paul Ralph, and Cécile Péraire. 2017. Software Development Waste.
In 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE).
130–140. https://doi.org/10.1109/ICSE.2017.20

Leuson Da Silva, Paulo Borba, Wardah Mahmood, Thorsten Berger, and João Moisakis.
2020. Detecting Semantic Conflicts via Automated Behavior Change Detection. In
2020 IEEE International Conference on Software Maintenance and Evolution (ICSME).
174–184. https://doi.org/10.1109/ICSME46990.2020.00026

Alberto Tavares, Paulo Borba, Guilherme Cavalcanti, and Sergio Soares. 2019.
Semistructured Merge in JavaScript Systems. 1014–1025. https://doi.org/10.1109/
ASE.2019.00098

André van der Hoek and Anita Sarma. 2008. Palantir: enhancing configuration manage-
ment systems with workspace awareness to detect and resolve emerging conflicts.

Thomas Zimmermann. 2007. MiningWorkspace Updates in CVS. In Fourth International
Workshop on Mining Software Repositories (MSR’07:ICSE Workshops 2007). 11–11.
https://doi.org/10.1109/MSR.2007.22

https://doi.org/10.1145/3238147.3241983
https://doi.org/10.1145/3238147.3241983
https://doi.org/10.1145/3196398.3196437
https://doi.org/10.1109/ESEM.2017.12
https://doi.org/10.1145/2351676.2351694
https://doi.org/10.1145/2025113.2025141
https://doi.org/10.1145/2393596.2393648
https://doi.org/10.1109/TSE.2013.28
https://doi.org/10.1145/2025113.2025139
https://doi.org/10.1109/ESEM.2015.7321191
https://doi.org/10.1145/3133883
https://tinyurl.com/privatelifemergeconflictsgh
https://doi.org/10.1109/ASE.2019.00097
https://doi.org/10.1145/3474624.3474646
https://doi.org/10.1002/smr.2441
https://doi.org/10.1109/TSE.2018.2871083
https://doi.org/10.1109/TSE.2018.2871083
https://doi.org/10.1109/ISSRE5003.2020.00016
https://doi.org/10.1109/ISSRE5003.2020.00016
https://hal.inria.fr/hal-01588482
https://hal.inria.fr/hal-01588482
https://doi.org/10.1145/3377024.3377047
https://doi.org/10.1145/3377024.3377047
https://doi.org/10.1109/ICSME.2017.53
https://doi.org/10.1109/TSE.2002.1000449
https://doi.org/10.1109/TSE.2002.1000449
https://doi.org/10.1007/s10606-018-9323-3
https://doi.org/10.1109/SANER.2016.46
https://doi.org/10.1109/ICSE.1998.671134
https://doi.org/10.1109/ICSE.1998.671134
https://doi.org/10.1109/TSE.2011.64
https://doi.org/10.1109/TSE.2011.64
https://doi.org/10.1109/ICSE.2017.20
https://doi.org/10.1109/ICSME46990.2020.00026
https://doi.org/10.1109/ASE.2019.00098
https://doi.org/10.1109/ASE.2019.00098
https://doi.org/10.1109/MSR.2007.22

	Abstract
	1 Introduction
	2 Motivation and Background
	3 Methodology
	3.1 Study Setup
	3.2 Git Log Analysis

	4 Results
	4.1 RQ1: How frequently developers integrate code using the merge command?
	4.2 RQ2: How frequently developers use commands that hide integrations from the development history?
	4.3 RQ3: How frequently merge scenarios end up in conflicts? And how about the hidden integration scenarios?
	4.4 RQ4: Which factors can influence developer choice of Git integration commands and strategies??

	5 Discussion
	6 Threats to Validity
	7 Related Work
	8 Conclusions
	Acknowledgments
	References

