
Information and Software Technology 121 (2020) 106256

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Understanding predictive factors for merge conflicts

Klissiomara Dias a , b , ∗ , Paulo Borba

a , Marcos Barreto

a

a Informatics Center, Federal University of Pernambuco, Av. Jornalista Anibal Fernandes, s/n 50740-560 Recife, PE, Brazil
b Cyberspatial Institute, Federal Rural University of Amazonia, Av. Presidente Tancredo Neves, n ∘ 2501, 66.077-830 Belém, PA, Brazil

a r t i c l e i n f o

Keywords:

code integration

merge conflict

modularity

collaborative development

empirical study

a b s t r a c t

Context: Merge conflicts often occur when developers change the same code artifacts. Such conflicts might be

frequent in practice, and resolving them might be costly and is an error-prone activity.

Objective: To minimize these problems by reducing merge conflicts, it is important to better understand how

conflict occurrence is affected by technical and organizational factors.

Method: With that aim, we investigate seven factors related to modularity, size, and timing of developers contri-

butions. To do so, we reproduce and analyze 73504 merge scenarios in GitHub repositories of Ruby and Python

MVC projects.

Results: We find evidence that the likelihood of merge conflict occurrence significantly increases when contri-

butions to be merged are not modular in the sense that they involve files from the same MVC slice (related

model, view, and controller files). We also find bigger contributions involving more developers, commits, and

changed files are more likely associated with merge conflicts. Regarding the timing factors, we observe contribu-

tions developed over longer periods of time are more likely associated with conflicts. No evaluated factor shows

predictive power concerning both the number of merge conflicts and the number of files with conflicts.

Conclusion: Our results could be used to derive recommendations for development teams and merge conflict

prediction models. Project management and assistive tools could benefit from these models.

1

h

i

d

c

o

c

v

c

t

c

t

l

s

t

o

b

W

c

w

i

1

n

m

a

P

s

d

o

w

t

b

s

f

u

h

R

A

0

. Introduction

In typical collaborative development environments, each developer

as a private workspace and share contributions through a central repos-

tory, isolating changes from others. Although, in principle, this allows

evelopers to work more efficiently by promoting parallel development,

onflicts might emerge when integrating code, since changes made by

ne developer are hidden from others until one decides to update the

entral repository. Merge conflicts, in particular, often occur when de-

elopers change the same code artifacts, and resolving them might be

ostly and is an error-prone activity [1–5] .

To minimize these problems by reducing merge conflicts, it is impor-

ant to better understand how conflict occurrence is affected by techni-

al and organizational factors. So in this paper we investigate seven fac-

ors related to three different aspects of developers contributions: modu-

arity (contributions to be merged do not change a common application

lice —MVC slice in this study, that is, related model, view, and con-

roller files from web projects based on MVC frameworks), size (number

f developers, commits, changed files, and lines in the contributions to

e merged), and timing (contributions duration and conclusion delays).
∗ Corresponding author at: Informatics Center Av. Jornalista Anibal Fernandes, s/n

E-mail addresses: kld2@cin.ufpe.br (K. Dias), phmb@cin.ufpe.br (P. Borba), msb5

ttps://doi.org/10.1016/j.infsof.2020.106256

eceived 6 March 2019; Received in revised form 12 December 2019; Accepted 6 Ja

vailable online 11 January 2020

950-5849/© 2020 Elsevier B.V. All rights reserved.
e evaluate the factors effect on the following variables: conflict oc-

urrence, number of conflicts, and number of files with conflicts. This

ay we answer a number of research questions and can understand the

mpact the factors have on merge conflicts.

To answer these questions, we analyze 73504 merge scenarios from

00 Ruby (61759 merge scenarios) and 25 Python (11745 merge sce-

arios) projects hosted on GitHub. Given our interest in studying the

odularity aspect, all projects are based on popular MVC frameworks

vailable for the two languages: Rails for Ruby projects, and Django for

ython projects. Our sample is composed only by merge scenarios re-

ulted from a git merge command. For each merge scenario, we collect

ata about the mentioned factors, and reproduce the merge operation,

bserving conflict occurrence, number of conflicts, and number of files

ith conflicts. We then explore a number of regression models to assess

he factors effect on these variables, and manually analyze scenarios to

etter understand the involved issues.

Our findings reveal that the likelihood of merge conflict occurrence

ignificantly increases (6.13 times for the Ruby sample, and 4.39 times

or the Python sample) when contributions to be merged are not mod-

lar in the sense that they involve files from the same MVC slice. We
 50740-560 Recife, Brazil.

@cin.ufpe.br (M. Barreto).

nuary 2020

https://doi.org/10.1016/j.infsof.2020.106256
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2020.106256&domain=pdf
mailto:kld2@cin.ufpe.br
mailto:phmb@cin.ufpe.br
mailto:msb5@cin.ufpe.br
https://doi.org/10.1016/j.infsof.2020.106256

K. Dias, P. Borba and M. Barreto Information and Software Technology 121 (2020) 106256

a

o

R

t

m

m

o

n

w

d

m

t

n

0

w

a

a

t

w

p

d

p

e

i

t

s

I

S

i

2

o

d

w

c

m

t

a

S

m

o

p

fl

f

t

o

v

o

t

r

c

e

u

d

a

a

p

Fig. 1. Post slice files.

fl

m

a

t

f

e

b

t

a

t

T

i

T

i

a

a

(

a

a

v

“

w

b

a

t

t

c

c

t

S

c

M

m

b

t

v

q

lso find that bigger contributions involving more developers, commits,

r changed files are more likely associated with merge conflicts for the

uby sample. The same also applies for the Python sample. Contribu-

ions involving more changed code lines are more likely associated with

erge conflicts only for the Python sample.

By contrast, our sample reveals that the conclusion delay between

erged contributions has no effect on merge conflict occurrence. More-

ver, no evaluated factor shows predictive power concerning both the

umber of merge conflicts and the number of files with conflicts. So

hereas the factors can predict conflict occurrence and the associated

amage, they cannot predict the extent of the damage. Besides these

ain findings, we bring a number of extra observations and relate them

o previous work. For example, conflicts happen in 13.4% of merge sce-

arios in our Ruby aggregated sample, with project rates ranging from

.9% up to 54.5%. For the Python sample, conflicts happen in 10.0%,

ith project rates ranging from 2.1% up to 37.5%.

Our findings suggest that managers of MVC projects should consider

ligning the structure of development tasks with the structure of the

ssociated application MVC slices, and avoid the parallel execution of

asks that focus on common slices. Artificially aligning task structure

ith the structure of the underlying programming language modules or

ackages, could lead to highly coupled tasks that compromise parallel

evelopment. Our results could also be used to derive merge conflict

rediction models. Project management and assistive tools could ben-

fit from these models by supporting earlier decisions about when to

ntegrate contributions to mitigate or reduce conflicts.

The remaining of this paper is organized as follows. Section 2 mo-

ivates our study and presents our research questions. Section 3 de-

cribes our study setup and how we collect the investigated predictors. 1

n Sections 4 and 5 , we respectively discuss findings and implications.

ection 6 presents the threats to the validity of our study. Related work

s discussed in Section 7 . Finally, in Section 8 , we conclude.

. Merge conflicts in practice

High degrees of parallel changes, and merge conflicts, have been

bserved in a number of industrial and open-source projects that use

ifferent kinds of version control systems [2,4–6] . This is observed even

hen using advanced merge tools [7–10] that avoid common spurious

onflicts identified by state of the practice tools. Resolving such conflicts

ight be time consuming and is an error-prone activity [3,11,12] . So,

o avoid dealing with conflicts, developers adopt risky practices such

s rushing to finish changes first [11,13] , and partial check-ins [14] .

imilarly, partially motivated by the need to reduce conflicts, develop-

ent teams have been adopting techniques such as trunk-based devel-

pment [15–17] and feature toggles [15,18–20] .

As these studies observe largely varying merge conflict rates among

rojects, and others [21] have observed a reduced negative merge con-

ict impact, it is important to find out technical and organizational

actors that are associated with merge conflicts and are responsible for

hese variations. This way we can better propose strategies to prevent

r reduce merge conflicts.

With that aim, we initially carried out informal exploratory inter-

iews with five experts from four software companies, two of them with

ffices around the world. One of the experts is an independent consul-

ant with experience in a number of countries. The others have expe-

ienced one or more roles as developer, technical leader, software ar-

hitect, and manager. As the idea was to understand how these experts

xperience merge conflicts in practice, questions were mostly aimed at

nderstanding how they define, plan, organize, allocate, and execute

evelopment tasks, and how this could impact on conflicts.
1 The term predictors used throughout the text refers to the independent vari-

bles we investigate and is not used to imply causality. Variations such as predict

nd predictive are used throughout the text with the meaning of “potential ” to

redict.

Although most experts acknowledged different degrees of merge con-

ict occurrence associated to parallel development and the lack of task

odularity, one of them surprisingly reported merge conflicts were not

n issue even under the presence of parallel development and distributed

eams. He attributed the lack of conflicts to the use of Rails, a Ruby MVC

ramework.

Influenced by foundational modularity work [22–24] , we hypoth-

sized the lack of conflicts resulted not from the simple use of Rails,

ut from matching the structure of development tasks with the struc-

ure of key framework concepts: slices , that is, groups of model, view

nd controller files related to a particular domain object, as illus-

rated in Fig. 1 for the Post slice in a Ruby on Rails application.

he model layer is responsible for business logic and manages the

nteraction with elements in a database, including data validation.

he view layer represents the user interface as .erb files contain-

ng HTML with embedded Ruby code. The controller layer inter-

cts with models and views. Fig. 1 shows, surrounded by red boxes,

 slice named Post and its related files: posts_controller.rb
controller layer), post.rb (model layer), _table.html.erb ,
rchived.html.erb , edit.html.erb , index.html.erb ,
nd show.html.erb (view layer). This is aligned with current de-

elopment practices [25] , which propose so called vertical slices as an

strategy to empower developers so they can deliver valuable outcomes

ith short feedback cycles ”.

For MVC projects, evaluating this hypothesis is especially important

ecause, in addition to the structure defined by vertical slices, one could

lso consider the structured defined by the three model, view, and con-

roller layers or horizontal slices, not to mention the underlying struc-

ure of the programming language modules and packages. So, to avoid

onflicts, we would not only have to avoid parallel tasks that focus on

ommon modules, but we would have to decide which modular struc-

ure to consider for task allocation in the first place.

With that motivation, and considering the importance of context to

oftware Engineering research [26] , we decided to investigate whether

ontribution modularity influences merge conflicts in Ruby and Python

VC projects. We assume contributions are the net result of develop-

ent tasks; in general, each contribution consists of a graph of commits,

ut they often can be seen simply as a sequence of commits. We consider

hat two contributions to be merged are modular when they do not in-

olve files from a common MVC slice. So we ask the following research

uestion.

RQ1: What is the effect of contribution modularity on merge

conflicts?

We use changes to a common MVC slice as a measure of non

modularity. We analyze the files modified by each contribution in

a merge scenario, and relate them to their slices. A merge scenario

K. Dias, P. Borba and M. Barreto Information and Software Technology 121 (2020) 106256

d

fl

e

s

o

c

a

p

c

m

b

t

g

t

3

w

t

n

fi

i

f

a

i

e

g

t

(

w

e

a

n

Fig. 2. A conflicting chunk example of merge 96df565 from Expertiza project.

Fig. 3. Example of Merging Contributions.

m

n

3

f

c

a

T

a

t

m

i

a

c

i

v

c

r

c

c

“

l

p

fl

s

s

i

t

(

r

v
is a triple formed by left and right commits 2 to be merged, and a

base commit that is a common ancestor to left and right. The left

(right) contribution starts with the left (right) commit in a scenario,

and includes all reachable commits up to, but no including, the base

commit.

Motivated by previous work, interview feedback, and anecdotal evi-

ence, we go beyond the modularity aspect and investigate merge con-

ict factors related to contribution size . McKee and others [12] , for

xample, informally claim that practitioners should attempt to make

maller commits, and commit often to prevent and alleviate the severity

f merge conflicts. However, they do not formally investigate whether

ontribution size metrics are related to merge conflict occurrence. To

ssess that, we ask the following question.

RQ2: What is the effect of contribution size on merge conflicts?

For answering this question, we compute the number of develop-

ers, commits, changed files , and changed lines in each contribution to

be merged. Then, for each factor, we compute the geometric mean

(
√
𝑎.𝑏) of the values obtained in both contributions (say a and b).

This way we normalize the data since a and b might substantially

differ.

Finally, we also consider factors related to the contribution timing as-

ect. Adams and McIntosh [15] suggest that the best way for reducing

onflicts is to keep branches short-lived and merge often. Bird and Zim-

erman [3] interview developers that suggest that problems are caused

y long delays in integrating contributions and moving them between

eams. To better assess that, we ask the following question.

RQ3: What is the effect of contribution timing on merge con-

flicts?

For answering this question, we use contribution duration and

conclusion delay . For each contribution to be merged, we determine

duration by computing the number of days between the last commit

in the contribution (the one just before merging) and the common

ancestor with the other contribution. Then we compute the geomet-

ric mean as RQ2. To determine conclusion delay, we compute the

difference, in days, between the dates of the last commit of each

contribution.

Besides these three main questions, we later introduce and investi-

ate a number of derived and related questions that more deeply explore

he issues involved.

. Study setup

To answer the research questions presented in the previous section,

e analyze a number of merge scenarios, collecting data about the men-

ioned conflict factors, and reproducing the merge operation in each sce-

ario to observe conflict occurrence, number of conflicts, and number of

les with conflicts. To support that, we implement an infrastructure that

nvolves two steps. The first focuses on mining merge scenarios (triple

ormed by a base commit and the two parent commits associated with

 merge commit) from GitHub projects, reproducing them, and collect-

ng information about the dependent variables. The second collects, for

ach scenario, information about the conflict factors, and explores re-

ression models to assess the factors effect on these variables. Later in

his section we discuss how we obtain our sample.

We characterize a merge conflict from three different perspectives

 merge conflict occurrence, number of merge conflicts , and number of files

ith merge conflicts), so we could investigate whether the factors we

valuate are related with not only conflict occurrence and the associ-

ted damage, but also with the extent of the merge conflict damage. We
2 In git repositories, every merge commit has two parents. We arbitrarily

amed them as left and right commits.

a

t
easure the extent of the damage in two different ways, by counting the

umber of merge conflicts, and the number of files with merge conflict.

.1. Mining Step

To mine merge scenarios, we implemented a script 3 to retrieve the

ull version control history of each evaluated project. To do so, we lo-

ally clone the project and query the project history to retrieve a list of

ll merge commit ids — commits resulting from a git merge command.

his list is ordered by merge date. For each merge commit, our script

lso collects the ids of their parent commits and common ancestor. We

hen, for each merge commit, checkout the revisions involved in the

erge scenario: base, and left and right parent revisions, as explained

n the previous section. After that we reproduce the merge scenario

nd check whether the merge resulted in conflicts. When that is the

ase, we set the merge conflict occurrence metric to 1; otherwise we set

t to 0. As the git merge command result lists the names of all files in-

olved in conflicts, we easily compute the number of files with merge

onflicts by counting the number of files in the resulting list. Also, as a

esult of a git merge command, all chunks of code involved in a merge

onflict (conflicting chunks [28]), are delimited by lines containing spe-

ific markers (“<<<<<<< ” and “>>>>>>> ”, with the separator

======= ”). Fig. 2 illustrates how a typical merge conflict looks

ike. So, to compute the number of merge conflicts, we look for these

atterns in all files involved in a merge scenario that resulted in a con-

ict. This way, the number of merge conflitcs of a merge scenario is the

um of all conflicting chunks in the files in the scenario. These data con-

titute the dependent variables used in this study and are summarized

n Table 1 (see Dependent Variables category), with the metric name on

he left, and its description on the right.

Subsequently, our scripts extract the list of file names changed

edited, added, or removed) by all revisions between a parent (left or

ight) and a base revision of a merge scenario. As explained in the pre-

ious section, the changes associated to these files is what constitutes

 contribution. To better understand that, consider Fig. 3 , which illus-

rates such a merge scenario. Let us consider a hypothetical project,
3 Available in our online appendix [27] .

https://github.com/expertiza/expertiza/commit/96df565

K. Dias, P. Borba and M. Barreto Information and Software Technology 121 (2020) 106256

Table 1

Merge conflict factors.

Metric Description

Dependent Variables

Number of merge conflicts Sum of all conflicting chunks (reported by the git line-based merge tool when merging the associated

contributions) in the files in the scenario.

Merge conflict occurrence Binary variable (assuming boolean values in this study), with 1 indicating that there was at least one merge

conflict when merging the associated contributions. Otherwise the variable is set to 0.

Number of files with merge

conflicts

Number of files with at least one merge conflict reported by the git line-based merge tool when merging the

associated contributions.

Modularity Metric

Changes to a common slice Binary variable (assuming boolean values in this study), with 1 indicating that each contribution changed at least

one file belonging to a common slice. Otherwise the variable is set to 0.

Size Metrics

Number of developers The geometric mean of the number of commit authors in each contribution. We choose commit author over

committer because the first refers to the person who originally wrote the contribution, whereas the second refers

to who last applied the contribution [32] .

Number of commits The geometric mean of the number of commits in each contribution.

Number of changed files The geometric mean of the number of changed files in each contribution. A change applied to a file in a commit

and later reverted is considered to change the file according to this metric.

Number of changed lines The geometric mean of the number of added and removed lines in each contribution. Modified lines are counted as

first removed and then added [33] . Adding a line to a file in a commit and later deleting it in the same

contribution leads to two changed lines according to this metric.

Timing Metrics

Duration The geometric mean of the number of days between the common ancestor and the last commit in each

contribution.

Conclusion delay The difference, in days, between the dates of the last commit of each contribution.

w

t

h

t

c

o

h

t

C

I

m

i

a

M

a

a

r

c

s

o

p

r

3

p

f

q

g

t

w

e

s

r

fi

c

a

s

i

p

m

a

r

g

a

d

a

t

m

t

fi

1

s

p

(

c

t

w

v

t

d

t

w

m

m

d

(

4 The date when the author made the original commit.
hich adopts a feature branch model for implementing development

asks in parallel to the master branch. Fig. 3 presents part of the commit

istory that includes these two branches. In this picture, let us assume

he Master branch has already integrated with the branch that contains

hanges made by three developers (Jim, Joe, and Max), while two devel-

pers (Paul and Mary) work in the Feature branch. As the Master branch

as changed since the Feature branch creation, when Mary tries to in-

egrate the Feature branch by invoking git merge a new merge commit,

19, is created. The corresponding merge scenario is depicted in blue.

ts base, left, and right revisions are respectively C10, C17, and C18. The

erge commit is not actually part of the scenario. The left contribution

s composed by four commits (C11 to C17), and the right contribution is

lso composed by four commits (C12 to C18). Two developers (Paul and

ary) worked on the left contribution, while three developers (Jim, Joe,

nd Max) worked on the right contribution. Other details in the figure

re later explained.

As our mining step is driven by the merge commits we find on GitHub

epositories, we do not collect all integration scenarios that actually oc-

urred in the project, as a number of git commands (rebase, cherry-pick,

tash apply, etc.) locally integrate code but do not leave public traces

f the integration, and some others, like squash, might even rewrite

roject history and erase traces that would eventually appear in public

epositories [29–31] .

.2. Predictors collecting step

With the scenarios and associated extra information collected in the

revious step, in this step our scripts collect contributions, slices, and in-

ormation about the conflict factors so that we can answer the research

uestions. Table 1 summarizes the metrics according to each investi-

ated factor category (see Modularity Metric, Size and Timing Metrics).

Except for the Modularity Extractor component, the same infrastruc-

ure was used to study Ruby and Python projects. A language and frame-

ork specific component is needed to extract the modularity factor, since

ach framework relies on specific naming conventions and directory

tructures to represent slices. For example, Rails adopts an specific di-

ectory structure for separately storing models, views, and controllers

les. By contrast, Django supports a variety of similar structures and

onventions.
In Rails, classes inside the model directory represent models, which

re named in the singular such as post.rb . The views are stored in

ubfolders of the views directory, named as the plural of the correspond-

ng model names. So the posts folder contains all view files related to the

ost model. The controller class is prefixed with the plural of its related

odel name. These conventions are depicted in Fig. 1 , which illustrates

 common way to organize Rails code.

The module notion (called slice or MVC slice) used in this study

elies on framework conventions for organizing code. It consists of a

roup of related model, view, and controller files that can be traced

nd matched by combining both the naming conventions and standard

irectory structure established by each MVC framework.

So, looking for these patterns, our scripts identify slices (and their

ssociated files) such as the Post slice illustrated in Fig. 1 . The changes

o a common slice metric is then easily computed by analyzing the files

odified by each contribution of a merge scenario, and relating them

o the previously identified slices.

As we want to detect whether merge scenario contributions changed

les from the same slice, the changes to a common slice metric is set to

 when both contributions changed at least one file related to the same

lice, and it is set to 0 otherwise. Considering the example in Fig. 3 , sup-

ose that Joe and Mary changed the posts_controller.rb class

which is related to the Post slice in Fig. 1) as part of their respective

ontributions. In this case, changes to a common slice is set to 1.

To better understand how we compute some of the metrics, consider

he example in Fig. 3 . All metrics are collected per merge scenario. This

ay, we normalize these metrics by using geometric mean since the

alues regarding each contribution might substantially differ.

The number of developers is 2 (Paul and Mary) in the left contribu-

ion, and 3 (Jim, Joe, and Max) in the right. Thus the variable number of

evelopers is set to 2.4 (
√
2 . 3) for this merge scenario. We compute dura-

ion first by determining the duration of each contribution (left/right),

hich in this study means the number of days between the base (com-

on ancestor) and the last commit in a contribution (the one just before

erging). Second, we compute the geometric mean of these values to

etermine duration . As the left contribution duration time is 10 days

C11 author date 4 is 2017-01-01 and C17 author date is 2017-01-10),

K. Dias, P. Borba and M. Barreto Information and Software Technology 121 (2020) 106256

a

a

1

i

i

F

t

2

3

p

d

i

P

M

p

(

v

t

v

o

t

t

m

l

m

n

p

w

g

w

a

W

m

r

l

a

i

e

o

o

O

d

c

s

W

h

N

a

M

o

S

f

f

i

l

Table 2

Distribution of projects by Domain.

Domain Ruby Python

Development 28% 40%

System Administration 19% 24%

Communications 15% 16%

Business & Enterprise 14% 12%

Home & Education 11% -

Security & Utilities 6% 8%

Graphics 6% -

Audio & Video 1%

Table 3

Projects data.

Sample KLOC Contributors Stars

Ruby 7 − 445 3 − 629 11 − 2433
Python 46 − 88 12 − 378 711 − 4731

4

r

r

4

C

t

t

n

s

u

a

s

g

a

p

h

e

v

m

w

t

a

p

t

d

m

L

t

c

u

w
nd the right contribution is 15 days (C12 author date is 2017-01-01

nd C18 author date is 2017-01-15), the contributions duration is set to

2.2 (
√
10 . 15) for this scenario.

Finally, we compute conclusion delay by determining the difference,

n days, between the dates of the last commit (the one just before merg-

ng) of each contribution. This way, in the merge scenario depicted in

ig. 3 , the conclusion delay for the contributions in this scenario is set

o 5, given that C17 author date is 2017-01-10, and C18 author date is

017-01-15, and these are the last commits of each contribution.

.3. Sample

To select our Ruby sample, we first used GitHub’s advanced search

age 5 to return only Ruby 6 projects with more than 500 stars, and or-

ered the list by recent project activity, as a start point to filter mean-

ngful projects. We apply the same criteria for the Python sample.

After that, we manually analyzed the resulting lists of Ruby and

ython projects discarding those that do not use the Rails and Django

VC frameworks, given GitHub does not provide a mechanism to query

rojects according to the used MVC framework. As the module notion

called slice or MVC slice) used in this study relies on Frameworks con-

entions for organizing code, we also exclude projects that use one of

hese frameworks but do not fully comply with standard framework con-

entions, such as having a specific directory structure. For example, we

nly considered Rails projects whose project’s directory structure con-

ains an app folder with the following subfolders: models, views and con-

rollers . This is needed both for the sample relevance and for confor-

ance with our scripts that rely on framework conventions. To discard

ess relevant projects, we manually check the available project docu-

ents such as Readme file, official web site, and wikis. If these files are

ot available or do not provide evidence of relevance, we discard the

roject.

Due to the filtering limitations of GitHub’s advanced search page,

e initially obtained a large number of non-MVC projects, forcing us to

radually decrease the stars threshold we initially adopted. Despite that,

e highlight the number of stars was used only as an initial filter, in an

ttempt to use a well-known GitHub proxy to get popular projects first.

e further apply additional criteria to identify active and real develop-

ent projects [29] . Besides, the final project list conforms to existing

ecommendations to avoid personal projects, since all projects have at

east three commiters and 92% of them has more than 10 commiters. As

 result, we consider the first 100 Ruby projects and 25 Python projects

n their respective lists.

Although we have not systematically targeted representativeness or

ven diversity [34] , by inspecting our sample we observe some degree

f diversity concerning the following dimensions: size, domain, number

f collaborators, number of commits, and number of merge scenarios.

ur sample contains projects corresponding to applications in different

omains such as Development, System Administration, and Communi-

ations [35] . For example, we categorize applications that support in

ome way the software development into the Development category.

e summarize the domain diversity of our sample in Table 2 . They also

ave varying sizes, as shown in Table 3 . For example, Refinery CMS

ews, a plugin for Refinery CMS, has only 2.3 KLOCs, while Discourse,

 platform for community discussion, has approximately 716 KLOCs.

oreover, Sapos has 11 collaborators, while Whitehall has 154 collab-

rators.

The first and last revisions of evaluated projects range from 20

eptember 2007 to 30 November 2017, for the Ruby sample, and range

rom 20 October 2007 to 30 November 2017 for the Python sample. For

urther information on our sample, we provide a complete subject list

n our online appendix [27] .
5 https://github.com/search/advanced .
6 GitHub search page allows only filtering repositories based on programming

anguage, not on frameworks.

c

m

p

p
. Results

In this section we present our study results. For brevity, we mostly

eport and discuss the results of the Ruby sample, referring to the Python

esults when they diverge from the Ruby results.

.1. RQ1: What is the effect of contribution modularity on merge conflicts?

onflicts occur even when merging modular contributions

To answer RQ1 , we first analyze the frequency of conflicting merges

aking into account the modularity of the related contributions. Al-

hough most scenarios with conflicts (57.3%) in the Ruby sample are

ot modular in the sense that their contributions involve files from the

ame MVC slice, we observe that merge conflicts also occur with mod-

lar merge scenarios, which change disjoint sets of slices (42.7%). So

ligning slice and task structure by defining tasks that focus on specific

lices, and only executing in parallel tasks that focus on disjoint slices,

ives no guarantees of conflict avoidance. The results of a per project

nalysis reinforce the trend of the aggregated sample. Just 7.0% of the

rojects have conflicts only in non modular scenarios, and just 7.0%

ave conflicts exclusively in modular scenarios.

Surprisingly, this goes against the expectation raised by one of the

xperts we interviewed (see Section 2), and does not confirm our moti-

ating hypothesis. So we try to better understand the issues involved. By

anually inspecting the files of a few conflicting modular contributions,

e observe that conflicts are caused because of parallel changes to files

hat are not part of the slice structure; this includes configuration files,

nd files that define classes reused across slices, as later detailed in the

aper. So the structure of the slices covers most, but not all, applica-

ion files. This invalidates the motivating hypothesis. Nevertheless, this

oes not preclude weaker relations between conflicts and contribution

odularity.

ikelihood of conflict occurrence significantly increases when contributions

o be merged are not modular

We then further investigate the relation between the changes to a

ommon slice and merge conflict occurrence metrics. Knowing that mod-

lar contributions do not prevent merge conflicts, we now investigate

hether non modular contributions increase the likelihood of merge

onflict occurrence. With that aim, following the Principle of Parsi-

ony [36] , we apply Logistic Regression [37] models to estimate the

robability of merge conflict occurrence. Logistic regression is the sim-

lest technique that applies to our context: a binary dependent variable

https://github.com/search/advanced

K. Dias, P. Borba and M. Barreto Information and Software Technology 121 (2020) 106256

Table 4

Odds ratios from regression assessing merge conflicts factors.

Model I Model II Model III Model IV Model V Model VI Model VII

Changes to a common slice 6.13 ∗∗∗ 4.28 ∗∗∗ 3.80 ∗∗∗ 5.18 ∗∗∗ 4.28 ∗∗∗ 3.78 ∗∗∗ 5.11 ∗∗∗

Number of commits 3.55 ∗∗∗ 3.53 ∗∗∗

Number of developers 1.17 ∗∗∗ 1.56 ∗∗∗ 1.15 ∗∗∗ 1.51 ∗∗∗

Number of changed files 3.27 ∗∗∗ 3.24 ∗∗∗

Number of changed lines 0.99 0.99

Duration 1.04 ∗∗∗ 1.09 ∗∗∗

Conclusion delay 1.01 1.01 1.01

Deviance Explained 10.9% 17.5% 19.0% 14.3% 17.5% 19.0% 14.5%

(∗∗∗ p < 0.001; ∗∗ p < 0.01; ∗ p < 0.05).

(

p

s

i

𝑚

w

f

t

t

b

s

a

a

t

o

s

o

a

c

d

v

s

t

v

i

t

M

t

c

l

M

l

c

t

M

d

e

S

t

t

c

t

s

n

t

fi

C

fl

c

c

m

s

(

r

i

n

n

t

d

C

c

s

a

c

t

fi

c

t

F

fi

r

p

c

o

c

i

t

m

c

m

c

s

s
 merge conflict occurrence , (say c), and continuous 7 and categorical inde-

endent variables. For example, when we consider changes to a common

lice (say cs) as the categorical independent variable, our model (say m)

s expressed as follows:

 = 𝑔𝑙 𝑚 (𝑐 ∼𝑐𝑠, 𝑓𝑎𝑚𝑖𝑙 𝑦 = 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙, 𝑑𝑎𝑡𝑎 = 𝑑𝑎𝑡𝑎𝑆𝑎𝑚𝑝𝑙𝑒)

here glm is the R [38] function used to run a logistic regression. This

unction receives as first parameter the dependent variable to the left of

he ~ (in this example, c) and the independent variable after the ~ (in

his example, cs 8). After the comma, we specify that the distribution is

inomial, as the outcome variable c is binary. Finally, we inform the

ample dataset.

To assess the fit of a model, we report the deviance, and the percent-

ge of the deviance explained by the model. Lower deviance values are

ssociated with better fit of the model to the data. To simplify interpre-

ation, we report the odds ratio associated with our measure, instead

f reporting the regression coefficients. An odds ratio is a relative mea-

ure of effect size, which allows the comparison of groups regarding the

ccurrence of a specific event. In this case, this measure allows evalu-

ting the effect size of modular contributions compared to non modular

ontributions on merge conflict occurrence. Odds ratio larger than 1 in-

icate a positive relationship between the independent and dependent

ariables, whereas odds ratio less than 1 indicate a negative relation-

hip.

Table 4 presents the logistic regression results for all metrics inves-

igated in this study. A model in column i indicates that the dependent

ariable merge conflict occurrence is expressed in terms of the variables

n the first column that have a corresponding value in column i .

The superscript labels associated with the values indicate the sta-

istical significance of results, as described just below the table. Thus,

odel I in Table 4 reveals a statistically significant (p < 0.001) rela-

ionship between merge conflict occurrence and the non modularity of

ontributions that change common slices. So we can say that non modu-

ar contributions have a significant effect on merge conflict occurrence.

ore precisely, when contributions change files from the same slice, the

ikelihood of merge conflict occurrence is 6.13 times higher than when

ontributions change files from different slices. Although not shown in

he table, for Python, we observe a 4.39 times higher likelihood. In

odel I, the modularity factor explains 10.9% of the deviance in the

ata. When we look at individual projects, the modularity factor can

xplain up to 33.9% of the deviance.

These results better explain the initial expectation discussed in

ection 2 . Managers of MVC projects should consider aligning the struc-

ure of development tasks with the structure of the associated applica-

ion MVC slices, and avoid the parallel execution of tasks that focus on

ommon slices. Whereas this does not eliminate merge conflicts as ini-

ially anticipated, it can help to significantly reduce occurrence. Tasks
7 We also apply logistic regression to assess the size and timing metrics, as

hown in Sections 4.2 and 4.3 .
8 To run a logistic regression with more than one independent variable, each

ew variable should be listed separated by + .

s

i
hat focus on different slices have reduced chances of changing the same

les, and therefore of leading to conflicts.

ontribution modularity is not associated with the extent of merge damage

Given the strong effect of changes to a common slice on merge con-

ict occurrence , we explore whether a similar effect applies to the other

onflict metrics. As our variable changes to a common slice is binary, we

ompute the point-biserial correlation coefficient. First with number of

erge conflicts , and then with number of files with merge conflicts . We con-

ider the effect size based on the correlation’s strength and significance

 p < 0.05), adopting a minimal superior threshold of 0.6 for strong cor-

elations [39] . We observe only weak correlations (0.07 to 0.13).

The absence of strong correlation is also observed with a correspond-

ng per project analysis. This suggests contribution non modularity has

o predictive power concerning the number of merge conflicts or the

umber of files with conflicts. So whereas non modularity can be used

o predict conflict occurrence and the associated damage, it cannot pre-

ict the extent of the damage.

onflicts in non modular scenarios often occur in model, view, and

ontroller files

In an attempt to investigate the overlap of changes to a common

lice, and to better understand the results described so far, we manu-

lly analyze a number of merge scenarios, especially the ones with both

onflicts and modular contributions (change files in disjoint slices), and

he ones with no conflicts but also non modular contributions (change

les in at least a common slice).

In scenarios with conflicts and modular contributions, we find most

onflicts occur in configuration files, and files that define infrastruc-

ure or reusable classes that are used across slices. For example, in the

at Free CRM project 9 both contributions modify the config/deploy.rb

le, which automates the deployment process. We observe one recur-

ently affected configuration file is Gemfile.lock. Analyzing individual

rojects, conflicts in this file range from 0% up to 100% of all conflicting

ontributions.

In scenarios with no conflicts but non modular contributions, we

ften observe each contribution applies only small and non scattered

hanges to the files that belong to the common slice. For example, again

n the Fat Free project 10 , one contribution simply deletes one line while

he other edits a different and separated line of the same controller

ethod.

Going further, we analyze conflicting scenarios with non modular

ontributions. In these cases, conflicts could occur not only in the com-

on slice files (model, view, and controller files), but also in reusable or

onfiguration files. To confirm the conclusions so far, we have to make

ure conflicts often occur in the slice files. So we ask How frequently do

lice files conflict? With further automatic analysis, we find that most

cenarios (62.8%) in our aggregated subsample (of conflicting scenar-

os with non modular contributions) contain at least one slice file with
9 fatfreecrm/fat_free_crm; commit 4d1e3e4.
10 fatfreecrm/fat_free_crm; commit 72eae62.

K. Dias, P. Borba and M. Barreto Information and Software Technology 121 (2020) 106256

Fig. 4. Size Factors Descriptive Statistics.

a

m

t

o

i

t

c

s

o

M

s

l

c

o

r

g

(

t

c

A

p

o

I

m

M

g

s

c

o

j

A

c

m

e

p

m

e

4

o

v

v

w

d

R

i

L

h

e

m

d

d

u

w

m

H

e

t

p

c

(

s

g

c

t

r

a

I

a

m

g

i

t

s

e

n

o

f

R

e

r

o

c

l

c

d

o

b

s

w

t

C

a

w

c

a

11 Collinearity occurs when two or more independent variables are highly cor-

related.
12 During the study execution, we test whether our dependent variables could

be related, also performing a logistic regression model. The results showed they

are not related (p > 0.9).
t least one conflict. A per project analysis reveals the same applies for

ost (77.0%) projects, with rates ranging from 50.0% up to 100.0% of

he scenarios in their respective subsamples. Small but significant part

f the projects do not contain conflicts in slice files (3.0%), or contain

n less than half of the scenarios (13.0%). This outcome brings evidence

hat not only the chances of merge conflicts is higher when contributions

hange files from the same slice, but also that overlapping changes in

lice files are expressive, reinforcing the relevance of structuring devel-

per tasks in a modular way to reduce merge conflicts.

ost contributions involve changes to more than one MVC module

To assess the potential of obvious alternatives to the promising slice

tructure we discussed so far, we follow previous work [34] that ana-

yzes task modularity. In such work, the notion of modularity adopted

onsiders the system packages as module unit. Differently, our notion

f modularity is based on both files purposes and underlying system di-

ectory structure, which we refer in this work as MVC module. Thus, we

roup files from a Rails project into five different MVC modules: Model

contains all application model files), View (contains all view files), Con-

roller (contains all controller files), Config (contains configuration files

ontaining routes, database schema, logs, Rakefile, Gemfile, etc.), and

pp (contains global reusable files such as CSS files, templates, static

ages, and Javascript files). In this way, we investigate the potential

f the MVC module structure for defining tasks and avoiding conflicts.

n particular, we first ask How are contributions spread along the MVC

odules? We found most contributions (65.3%) affect more than one

VC module (Mixed). Moreover, when contributions focus on a sin-

le MVC module, the Config module is the most affected (23.6%). This

uggest that contributions rarely focus on a single MVC module. In the

ontext of the analyzed projects, tasks often have to change more than

ne module. It is then hard to support parallel tasks that focus on dis-

oint modules and, therefore, have lower chances of merge conflicts.

rtificially changing task focus to support changes to a single module

ould lead to highly coupled tasks that compromise parallel develop-

ent. So aligning task structure with the MVC module structured just

xplained is not supported by our sample. This partially contrasts with

revious work [40] , which finds that most changes focus on a single

odule. However, they have studied three non MVC projects in differ-

nt programming languages, and they use a finer notion of change.

.2. RQ2: What is the effect of contribution size on merge conflicts?

Going beyond the modularity aspect, we now investigate the effect

f the size factors on merge conflicts. Most integrated contributions in-

olve small geometric mean values for the four size metrics, but values

ary widely across merge scenarios, as we present in Fig. 4 . For instance,

e observe the number of commits was of 9.5 ± 32.5 (average ± stan-

ard deviation), and the number of changed files was 16.1 ± 49.1 in the
uby sample. So, we curate the data and eliminate outliers by convert-

ng the size metrics to standardized scores using Z-score [41] .

ikelihood of conflict occurrence increases when contributions to be merged

ave more developers, commits, and changed files

Following common practice on evaluating logistic regression mod-

ls, like the one adopted by Cataldo and Herbsleb [42] , in the next

odels, we add the various independent metrics associated with the

ifferent research questions. This approach allows us to explore the in-

ependent and relative impact of different sets of factors. So, to eval-

ate the effect of the four size metrics on merge conflict occurrence,

e explore a number of models by adding the four size factors to the

odel used in the previous section to evaluate the modularity factor.

owever, given the presence of continuous variables in the new mod-

ls, and due to additional assumptions for logistic regression with more

han one variable, we first check for collinearity 11 [43] , as it may impair

rediction. So, before executing the models, we performed a pair-wise

orrelation analysis. This way, we avoid models with high correlation

multicollinearity) among the independent variables. 12 We found most

ize factors are strongly correlated (Spearman’s correlation coefficient

reater than 0.6). For example, number of commits shows a high level of

orrelation with number of developers (𝜌 = 0 . 73). For brevity, we leave

he details of the collinearity diagnostic to the online appendix [27] .

Considering the collinearity results, we then run three new logistic

egression models that combine only factors with weak (0.2 to 0.39)

nd moderate (0.4 to 0.59) correlation. These are Models II, III, and

V in Table 4 . Perhaps not surprisingly, number of developers, commits ,

nd changed files are significantly associated with higher probability of

erge conflict occurrence. For instance, according to Model II, as the

eometric mean of the number of commits in contributions to be merged

ncreases, the chances of merge conflict occurrence also increase 3.55

imes (and 2.16 in the Python model omitted here). With lower but

till relevant intensity, we observe effects for the other size factors. For

xample, according to Model III, increasing the geometric mean of the

umber of changed files also increases the likelihood of merge conflict

ccurrence by 227% (odds ratio equal to 3.27). For Python, the results

ollow a similar trend except for number of changed lines . By contrast the

uby results, we find evidence that the number of changed lines has an

ffect on merge conflict occurrence for our Python sample (odds ratio

ange from 1.49 up to 1.64, p < 0.001). We confirmed this different

utcome for the Ruby sample during our manual analyses. We found

onflicting scenarios occurred independently of the number of changed

ines in the Ruby sample.

Note the odds ratio value varies among models depending on the

ombined factors. This variation also occurs in the percentage of the

eviance explained. The size factors are responsible for 3.4% to 8.1%

f the deviance in the data (the difference in the deviance explained

etween model I and each of the other models, II–IV). Modularity and

ize factors together explain from 14.3% to 19.0% of the deviance. When

e look at individual projects, these factors can explain up to 53.5% of

he deviance.

ontribution size is not associated with the extent of merge damage

Given the effects of the size factors on merge conflict occurrence , we

ssess whether a similar effect applies to the other conflict metrics. First

ith number of merge conflicts , and then with number of files with merge

onflicts , we use the Spearman correlation since it is based on rank data

nd does not assume a linear relationship. Adopting the same correlation

K. Dias, P. Borba and M. Barreto Information and Software Technology 121 (2020) 106256

t

t

w

w

d

t

o

c

n

c

fl

t

fi

o

T

y

d

d

e

c

m

b

c

t

c

s

v

b

s

c

t

l

r

c

c

o

s

a

i

4

fl

w

a

C

a

i

c

Fig. 5. Timing factors descriptive statistics.

w

a

l

a

t

c

V

h

c

t

a

i

s

C

e

t

a

e

5

C

o

t

a

M

c

d

a

r

w

p

p

m

i

t

v

s
hreshold used in Section 4.1 , we observe only weak correlations (0.2

o 0.39). For instance, number of commits does not strongly correlate

ith number of conflicts (𝜌 = 0 . 32 , 𝑝 < 2 . 2 𝑒 16) nor with number of files

ith conflicts (𝜌 = 0 . 32 , 𝑝 < 2 . 2 𝑒 16). Our online appendix [27] brings the

etailed results; numbers are slightly different after the third decimal.

To better understand the absence of correlation, we individually run

he same analysis for each project in our sample. Similarly to the results

f the aggregated sample, we also do not observe strong and significant

orrelations. So no size factor shows a predictive power concerning the

umber of merge conflicts. The same holds for the number of files with

onflicts. Again, whereas contributions size can be used to predict con-

ict occurrence and the associated damage, it cannot precisely predict

he extent of the damage in terms of the exact number of conflicts or

les with conflicts. These numbers seem to be much more sensitive to

ther aspects of the changes in contributions, as explored next.

he size metrics are not definitive

To better understand the issues involved, we conduct a manual anal-

sis of a number of merge scenarios that either support or contradict the

iscussed results. We then observe conflicting scenarios with a single

eveloper per contribution. What really matters is that both develop-

rs simultaneously changed the same method area. For example, one

ontribution indented the method body while the other edited the same

ethod. 13 When observing non conflicting scenarios with a high num-

er of developers, we find cases with a small number of commonly

hanged files. In one contribution 14 the changes are small and not scat-

ered, although the other contribution has 26 developers.

Conflicting scenarios with a low number of changed files often had

ontributions changing the same slice file. For instance, in one merge

cenario 15 with on average 3 files, the contributions changed the same

iew file in adjacent regions. Non conflicting scenarios with a high num-

er of files often had contributions that change different application

lices. For example, in one merge scenario 16 with around 37 files per

ontribution, few files were changed by both contributions. Moreover,

he changes were small and not scattered.

When analyzing conflicting scenarios with a low number of changed

ines, conflicts often occurred due to changes to configuration and global

eusable files. For instance, in one merge scenario, 17 the contributions

hanged the same Javascript file. In this example, each contribution

hanged a single line. Non conflicting scenarios with a high number

f changed lines usually occurred when contributions changed different

lices, with a low number of common files. Moreover, we often observed

 high number of added and deleted files increasing the number of lines

nvolved. 18

.3. RQ3: What is the effect of contribution timing on merge conflicts?

We finally investigate the effect of the timing factors on merge con-

icts. Contribution duration , and conclusion delay , are often small but

idely vary, as we present in Fig. 5 . So, similarly to the size metrics, we

lso standardized the timing metrics.

ontributions developed over longer periods of time are more likely

ssociated with conflicts

We run a collinearity analysis following the same process described

n the previous section. The pair-wise correlation analysis shows strong

orrelation between the duration and number of commits factors (𝜌 = 0 . 75
13 For example expertiza/expertiza; commit 96df565.
14 instructure/canvas-lms; commit e8f15f7.
15 Katello/katello; commit 902d867.
16 nasa/earthdata-search; commit e86e243.
17 nasa/earthdata-search; commit 49fd722.
18 nasa/earthdata-search; commit 7a25dfc.

m

a

t

t

w

A
ith 𝑝 = 0). By contrast, conclusion delay showed weak correlation with

ll size factors (varying from 0.24 to 0.32, 𝑝 = 0), and moderate corre-

ation with duration (𝜌 = 0 . 41 , with 𝑝 = 0).
We then add the timing factors to the previous models (II, III, and IV)

nd run the logistic models V, VI, and VII in Table 4 . Our findings show

he higher the contribution duration, the higher the chances of merge

onflict occurrence (odds ratio vary from 1.04 to 1.09, Models VI and

II, and 1.18 to 1.23 in the Python model omitted here). On the other

and, we found no evidence that the conclusion delay increases merge

onflict occurrence (p > 0.1, Models V, VI, and VII).

These outcomes show that only one of the timing factors, contribu-

ion duration , should be considered by managers and development team

s a relevant variable to reduce or even avoid merge conflicts. However,

ts effect is not as relevant as the ones observed for the modularity and

ize factors.

ontribution duration and conclusion delay are not associated with the

xtent of merge damage

Conforming to what was observed for the modularity and size fac-

ors, we find no effect of the timing factors on the number of conflicts

nd the number of files of conflicts. Our analysis is identical to the one

xplained in the previous section.

. Implications

onflict reduction by defining and allocating tasks

To reduce conflict occurrence, our findings suggest that managers

f MVC projects should consider aligning the structure of development

asks with the structure of the associated application MVC slices, and

void the parallel execution of tasks that focus on common slices. As

VC and agile projects most often have feature or user-story based

hange requests, the suggested strategy shall bring modularity and pro-

uctivity benefits. In particular, directly associating requests to tasks,

nd tasks to slice modules, supports working on requests in parallel with

educed risks of integration problems due to conflict occurrence.

By contrast, artificially aligning change request and task structure

ith the structure of the underlying programming language modules,

ackages, or MVC layers could lead to highly coupled tasks that com-

romise parallel development. Moreover, this way we would likely have

ore parallel tasks that affect non disjoint sets of modules, consequently

ncreasing the chances of conflict occurrence. Naturally, change requests

hat focus on the need to develop an specific component, instead of de-

eloping a feature or user story, are more easily aligned with component

pecific tasks. These, in turn, better align with the structure of language

odules. But this kind of change request is not frequent in MVC and

gile projects, especially after the initial project phase.

In summary, as MVC projects support two alternative modular struc-

ures, managers should define tasks so that they align with the structure

hey fit best. Managers should also avoid the parallel execution of tasks

ith either different guiding structures or focus on common modules.

lthough not enough for eliminating conflicts as initially expected by

K. Dias, P. Borba and M. Barreto Information and Software Technology 121 (2020) 106256

o

b

C

a

d

a

m

a

t

w

s

s

l

m

m

b

t

w

v

t

c

t

i

fi

c

t

b

t

t

J

s

r

d

a

t

e

o

n

e

d

e

c

i

fi

T

p

s

r

o

i

h

a

e

t

c

a

b

c

o

a

o

a

p

a

b

t

c

d

o

a

l

t

r

fl

i

t

d

o

c

i

e

a

S

t

t

t

c

m

m

o

6

v

6

d

i

t

c

n

m

t

o

m

m

p

f

s
ne of the developers we interviewed, the advice we give might still

ring benefits due to conflict reduction.

onflict prediction models and tools

Our regression models and the associated data collection, processing,

nd analysis infrastructure we developed for our study could be used to

erive more advanced conflict prediction models. Project management

nd assistive tools could then benefit from these models. In particular,

erge conflict prediction models could help managers to better plan

nd manage development tasks and resources. By monitoring reposi-

ory information, management tools could support early decisions about

hen to integrate contributions to mitigate or reduce conflicts. For in-

tance, managers could monitor metrics related to the variables we con-

ider here, with appropriate thresholds derived from our models and

ive project data, and demand long-living branches, or branches with

any developers and commits, to more frequently pull from master, or

erge with it.

The manual analyses we performed on conflicting modular contri-

utions reveal that a significant part of the conflicts occur in configura-

ion files, especially Gemfile.lock files, which are automatically updated

henever a new gem is installed; these files record the installed gem

ersions, and keeping them under version control is mandatory prac-

ice in many teams. Our analysis also reveals that Gemfile.lock conflicts

ould be automatically resolved by simply discarding local changes of

he Gemfile.lock with conflicts, that can be done by doing a checkout 19

n such file, and then rebuilding the project based on the local Gem-

le file. These steps could be automated, for instance, by defining a

ustom merge driver 20 . By exploring the structure of other configura-

ion files such as Gemfile , we believe further conflict reduction could

e achieved by development teams that adopt semi-structured merge

ools [7,9] , since possible conflicting dependency declarations could be

reated as different nodes in the merge tree. The same might apply for

avaScript and Cascading Style Sheets files, to name a few that we ob-

erved. Adopting advanced merge tools that explore the knowledge de-

ived from our analysis could further reduce the risk of conflicts when

evelopers work on separate slices.

Our findings can also drive the development and improvement of

wareness and conflict detection tools. Awareness tools like Palan-

ir [11] , for instance, could also exploit our results by warning develop-

rs of MVC projects when they change the same application slice, instead

f just warning when they change the same file. This could encourage

ecessary coordination, as developers might eventually interfere with

ach other if they change files from the same slice. Crystal [5] , a conflict

etection tool, applies speculative merge to automatically and transpar-

ntly integrate, build, and test contributions in the background so that

onflict occurrence can be anticipated, and developers warned accord-

ngly. The merge conflict factors we study here could be used as an initial

lter to reduce the effort of Crystal’s speculative merging infrastructure.

heories and other studies

Our results bring evidence related to merge conflict reduction hy-

otheses and advice raised but not empirically evaluated by previous

tudies [12,15,24] , but we also go further by exploring new hypotheses

elated to contribution modularity and conclusion delay. Current state

f the practice merge tools report conflicts when contributions to be

ntegrated change overlapping textual areas of the same file. This fact,

owever, is not actionable since it is hard to precisely guess which files

nd specific areas will be changed by performing a programming task,

ven knowing the developer responsible for the task. It helps, however,

o explain our observations, since changing common slices increases the
19 git checkout -- Gemfile.lock
20 https://git-scm.com/docsgitattributes#_defining_a_custom_merge_driver .

o

t

w
hances of changing the same MVC file, possibly leading to overlapping

reas and conflicts. Similarly, the longer the duration and size of contri-

utions to be integrated, often the greater is the area of the program text

hanged by the contributions, and consequently the greater the changes

f overlapping. By contrast, conclusion delay does not increase such

rea.

Our observations seem to be consistent with the socio-technical the-

ry of coordination [44] proposed by James Herbsleb, Audris Mockus,

nd Jeff Robertson. This theory postulates that aligning technical de-

endencies with coordination activities should lead to higher quality

nd better productivity. We do not study coordination activities here,

ut it seems plausible to assume that open-source developers quite of-

en are not co-located, and that they rarely coordinate to avoid merge

onflicts. So reducing technical dependencies would also reduce coor-

ination needs, helping to achieve the alignment proposed by the the-

ry. But technical dependence reduction is precisely what we obtain by

sking developers to focus on disjoint slices, since developers will less

ikely work on the same files. Moreover, we observe in our study that

he resulting contribution modularity is associated with merge conflict

eduction. This, in turn, often leads to productivity by reducing con-

ict resolution effort, and might lead to better quality by reducing the

ntroduction of bugs when resolving conflicts.

Our results also indicate the need for further studies to investigate

he extent of the merge damage, since the investigated factors can pre-

ict conflict occurrence and the associated damage, but not the extent

f the damage. The value of predicting conflicts is to avoid the effort of

onflict resolution, and the negative consequences of not properly fix-

ng the conflict and, consequently, introducing bugs. By predicting the

xtent of the conflict damage we could give improved advice, under the

ssumption that if the damage is small, then so is the effort to resolve it.

o avoiding conflicts, in case of smaller damage, could not be critical.

Based on our findings and infrastructure, other studies could explore

he modularity hypothesis in other domains. For the Android applica-

ion domain, for example, one could study whether integrating changes

o the same Android component would be associated with conflict oc-

urrence. In Section 4.1 we explore a modularity notion based on MVC

odules and contrast that with the MVC slices results. This notion of

odule and others based on project directory structure could be used in

ther domains and languages such as C and Java.

. Threats to validity

Our evaluation naturally leaves open a set of potential threats to

alidity, which we explain in this section.

.1. Construct

Our motivation partially assumes that contributions correspond to

evelopment tasks, but we actually do not check whether the commits

n a contribution result from the execution of the same task. For projects

hat systematically refer to task ids in commit messages, we could pro-

eed with further confirmation. However, most projects we analyze do

ot conform to that. Nevertheless, contributions as defined here ulti-

ately correspond to code that was independently developed and has

o be integrated. If each contribution resulted from the execution of one

r more tasks becomes more a question of task granularity.

Similarly, we do not actually assess whether a large number of com-

its is associated with large or complex tasks. The large number of com-

its could be due to either large tasks or many small tasks executed in

arallel and integrated in a contribution. The same general idea is valid

or the other numeric factors. So contributions do not directly corre-

pond to the concept of a developer task, but we believe this only affects

ne possible interpretation of our results.

The module notion used in this study relies on Frameworks conven-

ions for organizing code. Knowing that any convention can be violated,

e do not consider in our sample projects that do not fully comply with

https://git-scm.com/docsgitattributes\043_defining_a_custom_merge_driver

K. Dias, P. Borba and M. Barreto Information and Software Technology 121 (2020) 106256

b

s

d

a

s

A

t

t

c

b

t

v

6

t

o

a

c

h

t

s

a

n

n

c

a

r

p

a

T

t

d

t

l

a

m

t

t

n

e

w

6

w

c

f

o

n

t

g

l

w

c

w

m

f

a

s

7

b

t

m

a

t

f

b

W

b

c

fi

c

t

l

r

g

f

t

s

d

b

c

t

g

f

e

a

c

t

e

o

s

o

H

t

a

m

n

(

f

t

w

c

p

c

c

a

p

t

d

p
asic standard framework conventions, such as having specific directory

tructures. This way our scripts can identify slices looking for file and

irectory patterns and naming conventions to identify slices (and their

ssociated files). We also conducted a manual analysis on the scripts re-

ults by selecting random merge scenarios to check for script accuracy.

lthough not observed, our scripts could miss slices that do not follow

he assumed patterns.

Our attempt to measure the extent of the merge conflict damage by

he number of conflicts and the number of files with conflicts is not ac-

urate because a single conflict might be harder to resolve than a num-

er of simple conflicts. Other metrics should be considered. However,

his does not impose risks on our results related to these two dependent

ariables since none were positive.

.2. Internal

A potential threat to internal validity is the use of public Git reposi-

ories for collecting merge scenarios. As these projects might make use

f mechanisms such as rebase , 21 which rewrites project history [29–31] ,

nd we do not have access to private repositories in the developers ma-

hines, needed to trace and collect all integration scenarios, 22 we might

ave missed a number of scenarios and conflicts that have not reached

he public repositories we analyze. Aranda and Venolia [45] report a

imilar difficulty in extracting complete information about developer’s

ctivities based only on electronic repositories history. As a result, the

umber of merge scenarios we analyze is a lower bound of the total

umber of integration scenarios. Although rebases performed when ac-

epting a pull request through GitHub GUI might be possible to detect

utomatically, the GitHub support for integration of pull requests via

ebase is relatively new, covering less than one year of commits in the

rojects in our sample. Only 3.2% of the projects in our sample have

 concentration of commits in the last two years of our sample period.

he fact remains, however, that the impact of an increased sample on

he study results is hard to predict because this mostly depends on the

evelopment practices of each project, but we are not aware of factors

hat could make the missed conflicts different from the ones we ana-

yzed.

Although our analysis does not discriminate between pull request

nd push scenarios, the use of pull request does not affect our timing

etrics since we do not consider the pull request date for computing

hose metrics. As we explained in Section 3.2 , the last commit made in

he contribution (the one just before merging, which could be the last

ew commit added as a result of a pull request update) is the one consid-

red to establish the date (author date) when a developer contribution

as concluded.

.3. External

Our sample contains Ruby and Python MVC projects, which aligns

ith our purpose of investigating factors that are associated with merge

onflicts in the context of web applications developed by using MVC

rameworks. The limited scope of our study also aligns with Briand and

thers [26] claim regarding the importance of context to Software Engi-

eering research. Although we can not generalize our results for projects

hat use other frameworks and languages, we highlight the only lan-

uage and framework dependent part of our infrastructure is the Modu-

arity Extractor , given that different programming languages and frame-

orks differently support modularity. So only this module should be

hanged to replicate our study with other technologies. Furthermore,

e are not aware of any factor that would not make our results gener-
21 https://git-scm.com/docs/git-rebase
22 Rebases performed when accepting a Pull Request through GitHub GUI,

ight be possible to automatically detect with some heuristics, by relating in-

ormation in the pull request log with information in the target repository.

d

w

d

s

e
lize to other languages with similar MVC frameworks, but we have no

upporting evidence.

. Related work

Our work is mostly related to the recent empirical study conducted

y Lebenich et al. [31] . In this study, the authors survey 41 developers

o understand factors that have the potential to predict the number of

erge conflicts resulting from code integration. Like in our work, the

uthors also conduct an empirical study to investigate potential effects

he identified factors might have on merge conflicts. However, we go

urther by analyzing the effect not only over the number of conflicts,

ut also over conflict occurrence and the number of files with conflicts.

e also investigate a different set of factors, with only two in common,

oth related to contribution size: number of commits and number of

hanged lines. Although both works measure the number of changed

les, the metrics we use are slightly different since we consider all files

hanged by at least one of the contributions, while they consider only

he files changed by both contributions. Moreover, we consider modu-

arity and timing factors, which are not covered by Lebenich et al. The

esults concerning the just two commonly analyzed factors and the sin-

le dependent variable (Number of merge conflicts) are compatible. In

act, they do not find any effect between the factors they analyze and

he number of conflicts. Our work is the first study that confirms their re-

ults. Furthermore, they do not have any results regarding the two other

ependent variables we investigate (Merge conflict occurrence and Num-

er of files with merge conflicts), and thus they do not derive the same

onclusions. Our sample has 38 fewer projects, but we analyze more

han 3 times (3.42) merge scenarios, that include projects in two lan-

uages and MVC frameworks (Rails and Django), whereas their sample

ocus only on Java projects not limited to the MVC context.

Another related work is the study conducted by Ahmed and oth-

rs [46] . They investigate the effect of code smells on merge conflicts,

nd the code smells impact on code quality. They found, among others,

onflicting merge scenarios are associated with more code smells than

hose merge scenarios not involved in a merge conflict. Our study brings

vidence of factors related to the modularity, size, and timing of devel-

pers contributions that are associated with merge conflicts. As a code

mell is an indication of bad design, their study result is in line with

urs since some code smells could be related to a modularity problem.

owever, we investigate a different dimension of modularity (Changes

o a common slice) while they investigate bad design issues that are more

ssociated with merge conflicts.

McKee and others [12] investigate developers perceptions about

erge conflicts resolution difficulty. They show developers consider the

umber of conflicting files, conflicting lines, and the size of changes

based on developers perception, not on metrics) as important factors

or resolution difficulty. Although we do not investigate merge resolu-

ion difficulty, our results show no evidence that the number of files

ith conflicts correlates with the size of changes.

Nelson and others [47] , in a recent study, extended the work dis-

ussed in the previous paragraph by presenting a model of developers’

rocesses for managing merge conflicts, based on the developer per-

eptions. They found, among others, that developers pointed out the

omplexity of the project structure as one of the perceived factors that

ffect their ability to resolve the merge conflicts. Furthermore, the de-

endencies of conflicting code were mentioned by developers as one of

he difficulty factors of merge conflicts. As these aspects are related to

ifferent dimensions of modularity, that prior study reinforces the im-

ortance of our findings since we bring evidence that the modularity of

evelopers contribution is a driving factor for merge conflicts. Besides,

e further bring evidence of factors related to the size and timing of

evelopers contributions that are associated with merge conflicts.

Ghiotto and others [28] investigate 2,731 GitHub projects to under-

tand how merge conflicts characteristics affect the strategies develop-

rs use to resolve them. They found, among others, that the number of

https://git-scm.com/docs/git-rebase

K. Dias, P. Borba and M. Barreto Information and Software Technology 121 (2020) 106256

m

i

t

t

o

c

o

o

a

d

t

t

m

a

c

t

i

w

t

t

s

c

t

p

o

c

s

o

c

t

n

fl

c

t

p

p

8

l

O

n

i

o

a

s

p

s

c

t

r

D

i

t

C

i

n

M

i

A

w

t

b

0

4

9

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

erge conflicts (named number of conflicting chunks in their work) has

nfluential on developers perception about merge difficulty and affects

heir conflict resolution strategy. Although we do not aim at evaluating

he merge difficulty and the strategy developers use to solve conflicts,

ur study relates to theirs since we also consider the number of merge

onflicts as one of the conflict characteristics we investigate. However,

ur interest is to understand how factors of modularity, size, and timing

f developers contributions can affect merge conflicts, while they are

iming at understanding how merge conflicts characteristics can affect

evelopers’ conflict resolution strategy.

Another empirical study by Cataldo and Herbsleb [42] investigate

he impact of technical and organizational factors on the failure of in-

egration tests in a large-scale project. Although we focus on different

etrics, our study complements Cataldo and Herbsleb since we also ex-

mine technical and organizational factors. However, we focus on merge

onflicts since they happen first.

Accioly et al. [10] performs an empirical study aiming to investigate

he structure of code changes that lead to merge conflicts. While they

nvestigate the structure of code changes that lead to merge conflicts,

e investigate other technical and organizational contribution factors

hat are associated with merge conflicts.

Other work propose new tools and strategies to both decrease in-

egration effort and improve correctness during task integration. Cas-

andra, proposed by Kasi and Sarma [4] is a tool that analyzes task

onstraints to recommend an optimum order of task execution. Palan-

ir [11] informs developers of ongoing parallel changes, and Crystal,

roposed by Brun et al. [5] , proactively integrates commits from devel-

pers repositories with the purpose of warning them if their changes

onflict. Such kind of speculative merge early detects conflicts and con-

equently reduces resolution effort. By contrast, conflict prediction with

ur metrics would avoid conflicts, and eliminate resolution effort in such

ases. On the other hand, prediction might have larger costs associated

o false positives and false negatives; speculative merge is free of false

egatives, but false positives are reported when at least one of the con-

icting changes is temporary and supposed to be reverted before task

ompletion. We are not aware of supporting evidence in favor of one of

hese approaches. Furthermore, tools like those we cited do not aim at

redicting merge conflicts given that they were developed for awareness

urposes during collaborative development.

. Conclusions

We conducted an empirical study to investigate the effect of modu-

arity, size, and timing of developers contributions on merge conflicts.

ur results indicate that the likelihood of merge conflict occurrence sig-

ificantly increases when contributions to be merged are not modular

n the sense that they involve files from the same MVC slice. We also

bserve that bigger contributions involving more developers, commits,

nd changed files are more likely associated with merge conflicts. The

ame applies to the contribution duration.

Our results bring evidence related to merge conflict reduction hy-

otheses and advice raised but not empirically evaluated by previous

tudies, but we also go further by exploring new hypotheses related to

ontribution modularity and conclusion delay. Furthermore, the infras-

ructure we developed for this study could be used, for instance, to de-

ive more advanced conflict prediction models.

eclaration of Competing Interest

The authors declare that they have no known competing financial

nterests or personal relationships that could have appeared to influence

he work reported in this paper.
RediT authorship contribution statement

Klissiomara Dias: Conceptualization, Methodology, Software, Val-

dation, Formal analysis, Investigation, Data curation, Writing - origi-

al draft, Writing - review & editing. Paulo Borba: Conceptualization,

ethodology, Validation, Writing - review & editing, Supervision, Fund-

ng acquisition. Marcos Barreto: Software, Data curation.

cknowledgments

We thank the anonymous reviewers and members of the Soft-

are Productivity Group for the quite pertinent suggestions that con-

ributed to improve this work. This research was partially funded

y INES 2.0, FACEPE grants PRONEX APQ 0388-1.03/14 and APQ-

399-1.03/17, CAPES grant 88887.136410/2017-00, and CNPq grant

65614/2014-0. It was also supported by CNPq projects 309172/2017-

 and 408516/2018-6.

eferences

[1] T. Mens , A state-of-the-art survey on software merging, IEEE Trans. Softw. Eng. 28

(5) (2002) 449–462 .

[2] T. Zimmermann , Mining workspace updates in cvs, in: Proceedings of the Fourth

International Workshop on Mining Software Repositories. MSR’07, IEEE Computer

Society, 2007, p. 11 .

[3] C. Bird , T. Zimmermann , Assessing the value of branches with what-if analysis, in:

Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations

of Software Engineering, ACM, 2012, pp. 45:1–45:11 .

[4] B.K. Kasi , A. Sarma , Cassandra: proactive conflict minimization through optimized

task scheduling, in: Proceedings of the 2013 International Conference on Software

Engineering. ICSE ’13, IEEE Press, 2013, pp. 732–741 .

[5] Y. Brun , R. Holmes , M.D. Ernst , D. Notkin , Early detection of collaboration conflicts

and risks, IEEE Trans. Softw. Eng. 39 (10) (2013) 1358–1375 .

[6] D.E. Perry , H.P. Siy , L.G. Votta , Parallel changes in large-scale software develop-

ment: an observational case study, ACM Trans. Softw. Eng. Methodol. (TOSEM) 10

(3) (2001) 308–337 .

[7] S. Apel , J. Liebig , B. Brandl , C. Lengauer , C. Kästner , Semistructured merge: rethink-

ing merge in revision control systems, in: Proceedings of the 19th ACM SIGSOFT

Symposium and the 13th European Conference on Foundations of Software Engi-

neering, ACM, 2011, pp. 190–200 .

[8] S. Apel , O. Leßenich , C. Lengauer , Structured merge with auto-tuning: balancing pre-

cision and performance, in: Proceedings of the 27th IEEE/ACM International Con-

ference on Automated Software Engineering, ACM, 2012, pp. 120–129 .

[9] G. Cavalcanti , P. Borba , P. Accioly , Evaluating and improving semistructured merge,

Proc. ACM Programm. Lang. 1 (OOPSLA) (2017) 59:1–59:27 .

10] P. Accioly , P. Borba , G. Cavalcanti , Understanding semi-structured merge con-

flict characteristics in open-source java projects, Empir. Softw. Eng. 23 (4) (2018)

2051–2085 .

11] A. Sarma , D.F. Redmiles , A. Van Der Hoek , Palantir: early detection of development

conflicts arising from parallel code changes, IEEE Trans. Softw. Eng. 38 (4) (2012)

889–908 .

12] S. McKee , N. Nelson , A. Sarma , D. Dig , Software practitioner perspectives on merge

conflicts and resolutions, in: 2017 IEEE International Conference on Software Main-

tenance and Evolution (ICSME), IEEE, 2017, pp. 467–478 .

13] R.E. Grinter , Supporting articulation work using software configuration manage-

ment systems, Comput. Support. Coop. Work 5 (4) (1996) 447–465 .

14] C.R.B. de Souza , D. Redmiles , P. Dourish , Breaking the code, moving between private

and public work in collaborative software development, in: Proceedings of the 2003

International ACM SIGGROUP Conference on Supporting Group Work, ACM, 2003,

pp. 105–114 .

15] B. Adams , S. McIntosh , Modern release engineering in a nutshell–why researchers

should care, in: Software Analysis, Evolution, and Reengineering (SANER), 2016

IEEE 23rd International Conference on, IEEE, 2016, pp. 78–90 .

16] F. Henderson, Software engineering at google. arXiv:1702.01715 . Accessed: Decem-

ber 2017

17] R. Potvin , J. Levenberg , Why google stores billions of lines of code in a single repos-

itory, Commun. ACM 59 (7) (2016) 78–87 .

18] L. Bass , I. Weber , L. Zhu , DevOps: A Software Architect’s Perspective, Addison-Wes-

ley Professional, 2016 .

19] M. Fowler, Feature toggle, Accessed: December URL https://goo.gl/QfJ6mM 2017.

20] P. Hodgson, Feature branching vs. feature flags: What’s the right tool for the job?,

Accessed: December URL https://goo.gl/4D2AMv 2017.

21] H.C. Estler , M. Nordio , C.A. Furia , B. Meyer , Awareness and merge conflicts in

distributed software development, in: Proceedings of the 2014 IEEE 9th Interna-

tional Conference on Global Software Engineering, IEEE Computer Society, 2014,

pp. 26–35 .

22] D.L. Parnas , On the criteria to be used in decomposing systems into modules, Com-

mun. ACM 15 (12) (1972) 1053–1058 .

23] C.Y. Baldwin , Design Rules: The Power of Modularity, The MIT Press, 2000 .

http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0001
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0001
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0002
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0002
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0003
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0003
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0003
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0004
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0004
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0004
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0005
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0005
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0005
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0005
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0005
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0008
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0008
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0008
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0008
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0009
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0009
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0009
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0009
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0012
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0012
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0012
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0012
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0012
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0013
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0013
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0014
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0014
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0014
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0014
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0015
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0015
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0015
http://arxiv.org/abs/1702.01715
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0017
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0017
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0017
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0018
https://goo.gl/QfJ6mM
https://goo.gl/4D2AMv
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0019
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0019
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0019
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0019
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0019
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0021
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0021

K. Dias, P. Borba and M. Barreto Information and Software Technology 121 (2020) 106256

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
24] M. Cataldo , J.D. Herbsleb , Coordination breakdowns and their impact on devel-

opment productivity and software failures, IEEE Trans. Softw. Eng. 39 (3) (2013)

343–360 .

25] E. Bottcher, What are our core values and practices for building software?, 2017Ac-

cessed: October URL https://goo.gl/6QonqY .

26] L. Briand , D. Bianculli , S. Nejati , F. Pastore , M. Sabetzadeh , The case for context–

driven software engineering research: generalizability is overrated, IEEE Softw. 34

(5) (2017) 72–75 .

27] Online Appendix,2018. Accessed: March URL https://merge-conflict-factors.github.

io/merge-conflict-factors/

28] G. Ghiotto , L. Murta , M. Barros , A.v.d. Hoek , On the nature of merge conflicts: a

study of 2,731 open source java projects hosted by github, IEEE Trans. Softw. Eng.

39 (3) (2018) . 1–1

29] E. Kalliamvakou , G. Gousios , K. Blincoe , L. Singer , D.M. German , D. Damian , The

promises and perils of mining github, in: Proceedings of the 11th Working Confer-

ence on Mining Software Repositories, ACM, 2014, pp. 92–101 .

30] C. Bird , P.C. Rigbyy , E.T. Barr , D.J. Hamilton , D.M. Germany , P. Devanbu , The

promises and perils of mining git, in: 2009 6th IEEE International Working Con-

ference on Mining Software Repositories, IEEE, 2009, pp. 1–10 .

31] O. Leßenich , J. Siegmund , S. Apel , C. Kästner , C. Hunsen , Indicators for merge con-

flicts in the wild: survey and empirical study, Automat. Softw. Engg. 25 (2) (2018)

279–313 .

32] S. Chacon , B. Straub , Pro Git, Apress, 2014 .

33] Y. Zhao , A. Serebrenik , Y. Zhou , V. Filkov , B. Vasilescu , The impact of continuous

integration on other software development practices: A large-scale empirical study,

in: 2017 32nd IEEE/ACM International Conference on Automated Software Engi-

neering (ASE), IEEE Press, 2017, pp. 60–71 .

34] M. Nagappan , T. Zimmermann , C. Bird , Diversity in software engineering research,

in: Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineer-

ing, ACM, 2013, pp. 466–476 .
35] L. de Souza , M. Maia , Do software categories impact coupling metrics? in: 2013

10th Working Conference on Mining Software Repositories (MSR), IEEE, 2013,

pp. 217–220 .

36] M.J. Crawley , Statistics: An Introduction Using R, Wiley, 2014 .

37] D.W. Hosmer Jr , S. Lemeshow , R.X. Sturdivant , Applied Logistic Regression, John

Wiley & Sons, 2013 .

38] The r project for statistical computing, 2017Accessed: December. URL

https://www.r-project.org/ .

39] T. Anderson , J.D. Finn , The New Statistical Analysis of Data, Springer, 1996 .

40] A. Oram , G. Wilson , Making software: What really works, and why we believe it,

O’Reilly Media, Inc., 2010 .

41] R.J. Larsen , M.L. Marx , An Introduction to Mathematical Statistics and Its Applica-

tions, 6, Pearson, 2017 .

42] M. Cataldo , J.D. Herbsleb , Factors leading to integration failures in global fea-

ture-oriented development: an empirical analysis, in: Proceedings of the 33rd In-

ternational Conference on Software Engineering, ACM, 2011, pp. 161–170 .

43] M.H. Kutner , C. Nachtsheim , J. Neter , Applied linear regression models, Mc-

Graw-Hill/Irwin, 2004 .

44] J. Herbsleb , Building a socio-technical theory of coordination: why and how (out-

standing research award), in: Proceedings of the 2016 24th ACM SIGSOFT Interna-

tional Symposium on Foundations of Software Engineering, ACM, 2016, pp. 2–10 .

45] J. Aranda , G. Venolia , The secret life of bugs: going past the errors and omissions

in software repositories, in: 2009 IEEE 31st International Conference on Software

Engineering, IEEE, 2009, pp. 298–308 .

46] I. Ahmed , C. Brindescu , U.A. Mannan , C. Jensen , A. Sarma , An empirical exam-

ination of the relationship between code smells and merge conflicts, in: 2017

ACM/IEEE International Symposium on Empirical Software Engineering and Mea-

surement (ESEM), IEEE, 2017, pp. 58–67 .

47] N. Nelson , C. Brindescu , S. McKee , A. Sarma , D. Dig , The life-cycle of merge conflicts:

processes, barriers, and strategies, Empir. Softw. Eng. 24 (5) (2019) 2863–2906 .

http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0022
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0022
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0022
https://goo.gl/6QonqY
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0023
https://merge-conflict-factors.github.io/merge-conflict-factors/
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0024
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0024
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0024
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0024
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0024
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0024
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0025
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0025
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0025
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0025
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0025
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0025
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0025
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0026
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0026
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0026
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0026
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0026
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0026
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0026
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0028
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0028
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0028
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0029
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0029
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0029
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0029
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0029
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0029
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0031
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0031
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0031
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0032
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0032
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0033
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0033
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0033
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0033
https://www.r-project.org/
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0034
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0034
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0034
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0037
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0037
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0037
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0038
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0038
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0038
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0038
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0039
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0039
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0040
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0040
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0040
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0041
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0041
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0041
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0041
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0041
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0041
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30001-X/sbref0042

	Understanding predictive factors for merge conflicts
	1 Introduction
	2 Merge conflicts in practice
	3 Study setup
	3.1 Mining Step
	3.2 Predictors collecting step
	3.3 Sample

	4 Results
	4.1 RQ1: What is the effect of contribution modularity on merge conflicts?
	Conflicts occur even when merging modular contributions
	Likelihood of conflict occurrence significantly increases when contributions to be merged are not modular
	Contribution modularity is not associated with the extent of merge damage
	Conflicts in non modular scenarios often occur in model, view, and controller files
	Most contributions involve changes to more than one MVC module

	4.2 RQ2: What is the effect of contribution size on merge conflicts?
	Likelihood of conflict occurrence increases when contributions to be merged have more developers, commits, and changed files
	Contribution size is not associated with the extent of merge damage
	The size metrics are not definitive
	4.3 RQ3: What is the effect of contribution timing on merge conflicts?
	Contributions developed over longer periods of time are more likely associated with conflicts
	Contribution duration and conclusion delay are not associated with the extent of merge damage

	5 Implications
	Conflict reduction by defining and allocating tasks
	Conflict prediction models and tools
	Theories and other studies

	6 Threats to validity
	6.1 Construct
	6.2 Internal
	6.3 External

	7 Related work
	8 Conclusions
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	References

