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Summary
In collaborative software development, developers submit their contributions to
repositories that are used to integrate code from various collaborators. To avoid
privacy and security issues, code contributions are often reviewed before inte-
gration. Although careful manual code review can detect such issues, it might be
time-consuming, expensive, and error-prone. Automatic analysis tools can also
detect privacy and security issues, but they often demand significant developer
effort, or are domain specific, considering fixed framework specific vulnerabil-
ity sources and sinks. To reduce these problems, in this paper we propose the
Salvum policy language to support the specification of constraints that help to
protect sensitive information from being inadvertently accessed by specific code
contributions. We implement a tool that automatically checks Salvum policies
for systems of different technical domains. We also investigate whether Salvum
can find policy violations for a number of open-source projects. We find evidence
that Salvum helps to detect violations even for well-supported and highly active
projects. Moreover, our tool helps to find 80 violations in benchmark projects.
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1 INTRODUCTION

Many software systems handle sensitive information such as confidential user data. Developers must then be concerned
about how to protect such information. This especially holds in collaborative software development projects, which rely
on version control repositories that are used to integrate code contributions (sets of changes expressed as commits, pull
requests, etc.) from a number of collaborators. Unless project leaders take appropriate measures to protect sensitive infor-
mation, integrated code contributions might carelessly or maliciously introduce privacy and security violations.1,2 The
situation is worse when inexperienced or untrustworthy developers are involved in the project. The consequences are
also aggravated by the fact that introduced violations can remain unnoticed for years, even in open source projects.3

Classical approaches such as cryptography and certificates might possibly reduce the effects of violations, but do
not actually avoid or detect them.4 To avoid privacy and security issues, code contributions in collaborative software
development projects are often reviewed before integration. Although careful manual code review can detect such issues,
it might be time-consuming, expensive, and error-prone.5-7 Automatic analysis tools can also detect privacy and security
issues, and reduce some of the manual code review drawbacks.8 But some of the tools demand significant developer
effort to prepare each code contribution for analysis.9,10 Other tools are domain specific, considering fixed framework
specific vulnerability,11-13 requiring significant adaptation for other technical domains. Additionally, some approaches
allow developers to mitigate the significant effort issue, but they do not support code contribution analysis.14,15
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To reduce the discussed problems, we propose the Salvum policy language to support the specification of constraints
that help to protect sensitive information from being inadvertently accessed by specific code contributions. For instance,
Gitblit is a git repository manager that uses sensitive information such as password to its authentication mechanism.
A logical policy for Gitblit states that the user password cannot flow to code contributions that add code related to a
cookie mechanism since it could leak the password. Therefore, Salvum allows us to write constraints specifying that a
user password cannot flow to the execution of code contribution that uses the cookie mechanism. In other words, this
code contribution cannot access the field that holds user password information. Salvum allows developers to define these
constraints for systems of different technical domains, as it does not rely on a fixed set of domain-specific potential vulner-
ability sources and sinks. To automatically check Salvum policies, we implement an information flow control (IFC)-based
tool9,16 that statically analyzes Java source code adherence to the underlying policy constraints; the same concepts and
architecture could be used to implement similar tools for other languages and static analysis.

Roughly, our proposal works as follows: a developer writes Salvum policies specifying sensitive information and the
code contributions of interest. Then, she runs our tool to check for policy violations. Our tool detects a collection of
violation warnings, indicating the lines of code involved in each potential violation, and the contributions (commits) that
introduced each violation. At last, the developer can review the code contributions to confirm the violations.

To investigate whether Salvum can indeed find relevant violations in the context of code contributions, we first conduct
an experiment considering nine highly active and well-supported open-source software projects. We study the projects’
source code, write project-specific constraints using our policy language, and execute our checking tool. We find evidence
that, even in this kind of well-curated projects, and with limited knowledge of requirements, architecture, and source
code, Salvum helps to detect violations. Additionally, to better understand the results, we manually analyze discussions
and code commits in a number of GitHub pull requests associated with the nine projects. We further evaluate Salvum
effectiveness to detect violations in five benchmark projects, finding 80 violations. Finally, we informally assess whether
Salvum helps to reduce the effort to find violations, when compared with a potential manual code review.

We structure the remainder of the paper as follows. Section 2 discusses four scenarios that illustrate the problem that
we want to tackle. Section 3 explains our language, giving an overview of Salvum and details of the language specification
and implementation. In Section 4, we present the evaluations of our approach to answer a number of research questions
related to Salvum’s potential to find relevant violations and reduce detection effort. Section 5 discusses related work, and
Section 6 presents the final considerations of this work. We provide all artifacts necessary to reproduce this work in our
online Appendix.17 At last, we previously reported our results in the first author PhD thesis.18

2 PROBLEM

The common weakness enumeration (CWE) has a catalog of more than 1000 kinds of software weaknesses.19 These are
different ways that software developers can introduce violations that lead to nonsecure projects. Each violation could
be subtle, and many are seriously tricky. Software developers are not taught about these issues in school, and most do
not receive any training on the job about these problems.20 Indeed, other researchers have found many problems in Java
projects.5,12,21,22

In this section, we explain four scenarios that illustrate privacy and security problems that could be time-consuming
and error-prone to detect with existing approaches, such as manual code review and plain IFC tools. We explain the
first scenario in Section 2.1, the second one in Section 2.2, the third one in Section 2.3, and the last one in Section 2.4.
These scenarios illustrate similar problems regarding violations of sensitive information. However, they differ in the way
we could detect such violations. For example, the first scenario demands that we analyze different code contributions
whereas the second scenario demands that we analyze potentially dangerous classes in a single software version.

2.1 First scenario: Code contribution introducing a violation

To better illustrate the problem we want to mitigate, in this section we explain an integration scenario from the Git-
blit1open-source Java project, which is supported by several developers who submit their code contributions to a GitHub
repository. Gitblit is essentially a git repository manager with a web user interface that administrators can use to create,

1http://gitblit.com
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edit, rename, or delete repositories, users, and teams. To identify the web interface users, Gitblit implements a cookie
mechanism. This mechanism was actually affected by one of the project contributions that resulted from an enhance-
ment task assigned to one developer.2 Her task was to improve the Gitblit code that deals with Java Servlets. Among other
code changes in the resulting contribution,2 the developer added Line 5 in Listing 1 to set a user cookie.

1 c l a s s RootPage {
2 void l o g i n U s e r ( UserModel u s e r ) {
3 i f ( u s e r != null ) {
4 . . .
5 app ( ) . auth ( ) . s e t C o o k i e ( r e q u e s t , response , u s e r ) ;
6 } . . .
7 }
8 }

Listing 1: Setting a user cookie

As the setCookiemethod receives the user object, which is an instance of UserModel, the developer responsible
for this contribution likely has not noticed thatUserModel instances hold sensitive user information such aspassword,
email, and location. Since the developers responsible to manually review code contributions in Gitblit have also not
identified any problem, this setCookie call has been merged into Gitblit’s main repository. As a consequence, when
one executes the loginUsermethod, sensitive user information unnecessarily flows in an implicit way to setCookie,
which is called in the new code contribution (Line 5). This violates the Principle of Least Privilege,23 which states that
every program part should operate using the least amount of privilege necessary to correctly complete the job.

In this case, the mentioned violation is critical because the new code contribution, likely created and submitted by an
inexperienced developer, should not have access to the sensitive user information contained in theuser object, especially
the one stored in UserModel.password. The code resulting from integrating the new contribution could actually
expose sensitive user information to any attacker possessing access to user browser data.

Although a more rigorous manual code review process could have found the illustrated violation and avoided inte-
gration into the main repository, this would have demanded the reviewer to read and understand 142 additions and 142
deletions in the Gitblit source code only for this not particularly large contribution2. The reviewer would also have to
assess the potential interactions among each of the additions and deletions, which might be hard even for smaller contri-
butions. This person would have to be an expert in the system in order to know not only the information that should be
protected, but also the program parts, and contributions, that could access it. In the case of Gitblit, which contains a lot
of sensitive information, this could be a hard task.

To mitigate the mentioned drawbacks of purely manual code reviews, we could explore the potential of IFC analysis16

as implemented in frameworks such as JOANA.9 Although that is promising, we would still have to manually identify and
label bytecode instructions that correspond to sensitive information and code contributions of interest. This task might be
time-consuming and error-prone, even using a graphical user interface such as the one provided by JOANA. Other static
analysis-based approaches like Jif10 and Checker Framework24 would require us to annotate the source code to specify
program elements that represent sensitive information, and they have no mechanisms for easily handling the abstractions
of code contributions. Android-based static analysis11,13 avoid the annotation effort but lack generality because they are
designed to work only for specific technical domains, considering fixed framework specific vulnerability sources and
sinks.

To handle the existing automated approaches limitations, in Section 3, we present Salvum and its checking tool,
which detected the illustrated violation. The problematic code contribution of Listing 1 was integrated to the main Gitblit
repository on July 2014. We found this problem by analyzing Gitblit’s project history using our tool, and we have imme-
diately reported the potential leak. Gitblit developers requested a pull request. We submitted a fix, and it was integrated
on December 2016. As illustrated, it might be difficult to detect violations, and they might exist for a long period before
they are detected and fixed.3

2http://tinyurl.com/q9xlueq
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2.2 Second scenario: Sensitive information leaking through third-party classes

Our second scenario illustrates an issue in the Blojsom project,3 which is an open-source and Java-written blog appli-
cation. This system calls many external library methods. One of these libraries is the Simple Logging Facade for Java
(SLF4J),25 which is useful to log operations throughout the source code. These logging operations are known to be a
potentially dangerous point of information leak26 as specified in the CWE19 and in The Open Web Application Security
Project.27 Thus, in many situations, we should not log-sensitive information. However, untrustworthy or careless devel-
opers might ignore this problem, which might compromise information confidentiality and integrity. Thus, we should be
able to find these leaks and discover the code contribution that introduced it.

For example, Listing 1 illustrates a method of the AtomAPIServlet class that checks whether a user is authorized to
request a resource. Line 4 obtains the user password and lines 7 and 8 log it in case an error occurs. Thus, the password
value is passed as an argument to logger.info(), which leads to sensitive information flowing to the code of an
external library (SLF4J).

1 boolean i s A u t h o r i z e d ( H t t p S e r v l e t R e q u e s t req ) {
2 boolean r e s u l t = f a l s e ;
3 . . .
4 password = realmAuth . s u b s t r i n g ( pos + 1 ) ;
5 r e s u l t = _blog . c h e c k A u t h o r i z a t i o n ( username , password ) ;
6 i f ( ! r e s u l t ) {
7 l o g g e r . i n f o ( " Unable t o auth u s e r [ " + username + " ]
8 with password [ " + password + " ] " ) ;
9 } . . .

10 }

Listing 2: Logging passwords

The code in Listing 2 might be dangerous because it prints the password in the log files, which could expose this
information to an attacker in case the user provide the wrong username, but the correct password. In this context,
sensitive information should not flow or be changed by the code of external libraries such as Loggermethods. We could
not report this issue because, differently from Gitblit, the Blojsom project is no longer supported. Thus, the problem we
illustrate in Listing 2 is still present in Blojsom source code.

To detect this problem, a manual code reviewer would have to localize and understand 58 references to Logger
and 340 calls to its methods in the most recent version of Blojsom. In contrast to the other scenarios discussed so far,
the Blojsom project does not have a code contribution review process. Thus, developers might have integrated many
violations. For this reason, we should also be able to detect privacy and security violations to such cases.

Moreover, she would have to identify flows of sensitive information to these methods. For example, she would have
to reason whether the password value reaches the logger.info()method. In case the password is reassigned before
reaching logger.info(), there is no violation. Identifying such issues could be a hard task because it includes explicit
and implicit flows.

At last, JOANA9 would require that sensitive information and Logger methods are manually labeled. This task is
not as time-consuming as using these tools for the first scenario because we only consider one Blojsom version instead of
many code contributions. However, one might forget to annotate instructions across 340 different Logger method calls.
Additionally, if we consider Checker Framework24 or Jif,10 we would have to scatter and tangle policy code with core
code, which could make it harder to evolve and maintain the system.28

2.3 Third scenario: Code contribution introducing a potential violation

This scenario differs from the first scenario because here the code contribution introduces a potential violation. We con-
sider a real example in the ScribeJava project.4It is a simple authentication library for Java programs. This project is also
open-source and supported by several developers, who submit their code contributions to its repository on GitHub.

3https://sourceforge.net/projects/blojsom/
4https://github.com/scribejava/scribejava

https://sourceforge.net/projects/blojsom/
https://github.com/scribejava/scribejava
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The OAuth29 library has representations of access tokens, which hold sensitive information such as the token
secret. Many classes implement these representations. Each of them override toString methods. On February 2016,
a developer submitted a code contribution with the goal of updating token representations.5Among 559 changed lines
throughout 33 files, this developer implemented equals() and toString() methods. Listing 3 illustrates one
toString() implementation introduced by this code contribution.

1 c l a s s OAuth1AccessToken {
2 S t r i n g t o S t r i n g ( ) {
3 return " OAuth1AccessToken { " + " oauthtoken=" + getToken ( )
4 + " , o a u t h t o k e n s e c r e t=" + g e t T o k e n S e c r e t ( ) + " } " ;
5 }
6 }

Listing 3: Implementing toString method

This developer carelessly introduced the sensitive information token secret in the result yielded by the toString
method. In case other developers call OAuth1AccessToken.toString(), the token secret would be printed, which
exposes this sensitive information. ScribeJava developers did not notice this issue during manual code review. Thus, this
dangerous code was merged into the central repository.

In this context, the code contribution illustrated in Listing 3 (lines 2, 3, and 4) should not have access to the token
secret in the toStringmethod because, in case some developer calls it, sensitive information would be printed. We have
opened an issue in the ScribeJava project and one of its maintainers accepted it as a problem.6Since it was an easy fix,
this developer submitted a new commit excluding the token secret from the toStringmethod.7In this case, it took 21
months from the submission of the problematic code contribution to the commit fixing it. To find the problem introduced
by this code contribution, a reviewer might need to understand sensitive information flows for 33 different files with 385
additions and 174 deletions. Moreover, she would have to identify the sensitive information that might flow to the code
contribution. This review task might be unfeasible if we need to analyze a large number of code contributions manually.

Analogously to the scenario of Section 2.1, the task of manually annotating code contributions might be
time-consuming and error-prone if we use JOANA.9 Notice that there are more changed lines in this scenario which leads
to the need for more instruction labeling. At last, if we use other tools such as Jif,10 we would have the same drawback:
to manually annotate sources and sinks throughout Java source code for each code contribution.

2.4 Fourth scenario: Untrustworthy developer introducing violations

The fourth scenario is a hypothetical example of the Open Refine project.8This system works with messy data, cleaning
or transforming it from one format into another. Open Refine is a client-server system written in Java. Furthermore, Open
Refine implements an authentication mechanism so that users can access their spreadsheets stored in Google Drive. This
project is also open-source and supported by many developers.

Some of these developers might be considered untrustworthy, for example, a new developer, with few commits
accepted. Other characteristics might be necessary to define whether a developer is untrustworthy: (i) a high number of
rejected or reverted commits, (ii) a low-activity profile in GitHub, (iii) the developer is a stranger to a particular software
community, (iv) or because the developer was fired from a company.

These developers’ code contributions should be checked carefully. For the Open Refine project, we assume that one
of its developers is untrustworthy. Among several development tasks, this developer improved the authentication mech-
anism between Open Refine and Google Drive. Listing 4 illustrates a snippet of code of his contribution. The line 3
represents the added code, whereas the line 4 represents the removed code.

5https://github.com/scribejava/scribejava/commit/d734a4df
6https://github.com/scribejava/scribejava/issues/796
7https://github.com/scribejava/scribejava/commit/73c29f5
8http://openrefine.org
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http://openrefine.org
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1 void d o I n i t i a l i z e P a r s e r U I ( S e r v l e t R e q u e s t r e q u e s t , S e r v l e t R e s p o n s e r e s p o n s e ) {
2 S t r i n g token = TokenCookie . getToken ( r e q u e s t ) ;
3 boolean i s P u b l i c = " t r u e " . e q u a l s ( g e t P r o p e r t y ( " i s P u b l i c " ) ) ;
4 S t r i n g token = i s P u b l i c ? null : TokenCookie . getToken ( r e q u e s t ) ;
5 . . .
6 }

Listing 4: Removing public check

Notice that before this code contribution, there was a verification checking whether a token is public. This
verification was removed by the untrustworthy developer, which might compromise user privacy since Token-
Cookie.getToken() returns sensitive information. Hence, sensitive user information of existing code mistakenly
flows to an untrustworthy developer code contribution. In this case, it might result in private user spreadsheet access
without proper permission.

For instance, if this developer is fired from a company, we should check his code contributions to find violations. In
this scenario, the untrustworthy developer has 813 commits with 1027084 additions and 589028 deletions to be manually
reviewed.17 A code reviewer should search for sensitive information leak in each of these commits to check the flow of
information to the execution of their lines.

Using JOANA9 for this scenario would require manually labeling lines added by the untrustworthy developer for his
1027084 additions spread across 813 commits. Besides that, sensitive information needs to be labeled for these different
program versions. Thus, using this tool for this scenario would be more time-consuming and error-prone than for the
others. In turn, the effort to use the Checker Framework24 or Jif10 could be unfeasible because we would need to manually
annotate security types for 813 different versions.

3 THE SALVUM POLICY LANGUAGE

To mitigate the problems discussed in the previous section, we propose the Salvum policy language to support the spec-
ification of constraints that help to protect sensitive information from being inadvertently accessed by specific code
contributions. Our main goal with Salvum is to find sensitive information confidentiality and integrity violations. By using
our language, we can check whether changes submitted by a developer (a code contribution), or even specific classes
(like in unreliable external libraries), access sensitive information they should not access. To better illustrate how Salvum
works, we first overview its main expected usage scenarios, and later we explain its main features and implementation.

3.1 General idea

In a collaborative software development context, it would be useful to write a set of constraints and check them to protect
confidentiality and integrity of sensitive information that might flow within a system. This way, a developer (architect,
code reviewer, etc.) could use Salvum to specify a set of application-specific constraints to avoid the problems we discuss in
Section 2. Our language constructs allow a developer to refer to program elements associated with sensitive information
(like password, location, medical data, etc.), and parts of the code expressed either as program elements or as code con-
tributions (like commits, pull requests, etc.), specifying restrictions on how they are related. For example, Salvum allows
us to specify that a user password cannot flow to the execution of parts of the code contributed by a set of untrustworthy
developers.

We can use Salvum in two kinds of usage scenarios: backward and forward. The backward scenario is useful when
we are supposed to check project history to make sure constraints have not been violated. For instance, consider that a
company fires a developer due to misbehavior. Assuming this developer has contributed with several commits across the
employment period, it could be useful to check potential sensitive information violations in all these commits. To do that,
one could write Salvum constraints to specify that sensitive information should not flow to the code added or changed
by these commits. In a forward scenario, we are supposed to check code contributions just before they are integrated into
a team repository. For example, consider an open-source project that receives many code contributions from different
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F I G U R E 1 General idea [Colour figure can be viewed
at wileyonlinelibrary.com]

developers, some of which are either naive or untrustworthy. So, a project developer leader could write Salvum constraints
to check whether sensitive information leaks to these code contributions. This way, before integrating code contributions
into the repository, we can ask developers to fix detected violations.

Figure 1 depicts how our solution works. First, a specialist identifies system specific sensitive information. Second,
she writes Salvum constraints that restrict how this information can be accessed by different parts of the code or contri-
butions. Third, Salvum automatically checks source code adherence to these constraints, and reports violation warnings.
At last, a specialist determines which warnings correspond to relevant violations and take appropriate measures to
fix them.

3.2 Language features

Salvum supports four main constructs: noflow, noset, flow, and set. They all relate program elements that declare
sensitive information to parts of the code expressed either as program elements or sets of contributions. Different from
other approaches,10-12,15,21 our language supports the expression of these sets of code contributions. The noflow con-
struct, in particular, specifies that a set of sensitive information cannot flow to certain parts of the code. For example, the
declaration below specifies that the password information cannot be accessed by the class CookieManager.

UserModel {password} noflow CookieManager

In this simple case, we specify a single sensitive information by referring to its identifier (password) and the class
that declares it (UserModel). Similarly, we specify a single part of the code by referring to a class identifier (CookieM-
anager). Although simple, such constraint could help to prevent the problem introduced in Section 2. Constraints like
this, based on noflow, impose no other constraint on information (such as name or login) not declared in the constraint.
By making sure sensitive information does not leak, the noflow construct guarantees information confidentiality.

Complementing noflow and guaranteeing information integrity, the noset construct specifies that sensitive infor-
mation cannot be altered by certain parts of the code. For example, the declaration below specifies that the password
information cannot be changed by the class CookieManager.

CookieManager noset UserModel {password}

In addition to the noflow constraint, we could use the noset declaration above to prevent a problem even more
critical than the one introduced in Section 2. Again, we are not imposing further constraints on the specified class
(CookieManager). It could, for example, write to sensitive information like location.

http://wileyonlinelibrary.com
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In contrast to noflow, Salvum supports the flow construct. It specifies that only a certain set of information can
flow to certain parts of the code. No other information is allowed to flow to specified parts of the code. For example, the
following constraint specifies that only user login can flow to the specified class.

UserModel {login} flow CookieManager

Similarly, in contrast to noset, we provide the set construct, which specifies that only a certain set of information
can be altered by certain parts of the code. For instance, we can specify that only an email message can be altered by a
code contribution that implements an indentation feature for an email system. This code contribution cannot alter other
information (like the user e-mail address). Together, the flow and set constructs can be used to enforce the Principle of
Least Privilege:23 a code contribution should use the least amount of privilege necessary to correctly complete its execution.

Although the previous simple examples illustrate constraints that refer to a single sensitive information and a single
part of the code expressed as a class, our language allows us to specify more than one specific sensitive information, pos-
sibly declared in different classes. It also allows us to represent parts of the code expressed as a number of classes or code
contributions. Such contributions can be specified in three distinct ways: intentionally, extensionally, and parametrically.

Intentionally. We specify code contributions by stating properties they satisfy. For example, we can say that the con-
tributions of interest correspond to the set of commits in project history that contains a particular message keyword. The
example below specifies the only information (login, nickname, or countrCode) that can flow to commits in a given
pull request, assuming that all commits in this pull request have #921 (the pull request identifier) in their messages.30

UserModel {login,nickname,countrCode} flow PullRequest
where
PullRequest = {c | c.message.contains("#921")}

Here we assume that only the commits from a given pull request have #921 in their message, but we could write
more complex expressions to refer exactly to the commits of interest. Alternatively, we could specify code contributions
by referring to a specific project issue31 or task, or even a feature, as long as we can identify their commit messages by
some property, such as using #921.

To illustrate another kind of property that can be explored to define contributions, consider the following use of the
set construct to specify the information that can be altered by a code contribution.

UntrustworthyBob set UserModel {login,nickname}
where
UntrustworthyBob = {c | c.author("Bob")}

Here we use the commit author information to define code contributions. For instance, suppose that Bob was fired,
and his company wants to check his commits to ensure that his code only changes public user information. The illustrated
constraint verifies whether the code Bob committed alters information other than those stored in login and nickname.

Extensionally. Salvum also supports the specification of program elements or contributions by simply listing them.
The example below specifies that only a specific set of public information can flow to a specific set of two methods
(abbreviated as Log) of the Logger class; other information cannot flow.

UserModel {login,name} flow Log
where
Log = {Logger.error(), Logger.info()}

This constraint might help to assure that only public information flows to public outputs, such as Logmethods.
Parametrically. We can also specify code contributions in an abstract way by referring to a parameter that is provided

when invoking Salvum’s interpreter. For example,Contribution in the example below is a parameter, to be instantiated
when invoking the interpreter. Such parameter does not represent a fixed specified set of commits.
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This type of specification is useful when we want to check constraints for arbitrary sets of commits, as we did to detect
the problem introduced by the code contribution of Listing 1 in Section 2. In that case, we simply checked the constraint
for a subset of Gitblit commits that we had previously built, as checking for all commits would be too expensive.

UserModel {password, locality} noflow Contribution

We first identified fields that could store sensitive information, such as password and locality in UserModel.
The noflow construct specifies that this set of sensitive information cannot flow to lines changed or added by the code
contribution represented by Contribution. By properly instantiating Contributionwith the hashes of commits we
had previously built, we identified the violation illustrated in Section 2.

3.3 Salvum grammar

Part of the grammar for Salvum is shown in Figure 2. A program represents a set of constraint or constant declarations. The
former represents a constraint itself specifying the information to be protected either using the noflow, noset, flow,
or set constructs. The latter defines a constant that can be used in many constraints. A module might be an identifier (eg,
a Contribution), parts of a program, such as a method call, or a sequence of fields that stores sensitive information.

Salvum also supports combinations of expressions. For instance, we could declare that a set of sensitive information
cannot flow to contributions made by a particular author and contain a specific commit message. We can also specify
constraints considering only commit hashes. For example, in case we want to enforce a constraint for a given project ver-
sion. Finally, our constraints define boundaries for code contributions or classes. Salvum sees these elements as software
modules.32 In Section 3.4, we explain it in more detail as well as Salvum’s implementation.

3.4 Language implementation

An additional contribution of this work is the development of a tool to automatically enforce the Salvum constraints that
we specify. To achieve that, we use the JOANA33 tool, which provides a set of IFC Analysis.16 This way, we can use these
analyses to detect information flows that might violate the specified constraints.

Our tool has the following implementation steps: Preprocessing, Generating System Dependence Graphs (SDG),
Labeling, Analyzing, and Results processing. Figure 3 illustrates them as well as their inputs and outputs.

3.4.1 First step - Preprocessing

As shown in Figure 3, this step receives as inputs the specified constraints and the source code of the system we want to
analyze. There are two different preprocessing procedures, which depends on the constraints.

The first one regards the specification of code contributions as Operations listing. In this case, we defined an algorithm
to find occurrences in the source code of calls to methods that are specified by the constraint. In this context, our algorithm

F I G U R E 2 Salvum simplified grammar
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F I G U R E 3 Five steps of our tool implementation [Colour
figure can be viewed at wileyonlinelibrary.com]

holds information about the lines of code of these occurrences throughout the source code. Therefore, the output of this
step is a mapping of classes and line numbers. For example, if there is a call to a Logger method in a class called Main
in lines 11 and 12 plus another call in a class called Repository in lines 6 and 16, this step would create the following
mapping: [Main:[11,12]],[Repository:[6,16]]. This mapping is useful for automatically labeling the source
code as different security levels16 and to mitigate the time-consuming and error-prone problem, which we explained in
Section 2.

The second preprocessing procedure concerns the specification of explicit and implicit code contributions. Therefore,
we need to deal with program history in Version Control Systems.34 For now, Salvum supports Git.35 In this context, the Git
diff command generates a diff file, which contains the differences between existing code and code contribution. We
defined an algorithm that analyzes the diff file to obtain the classes and their source code line numbers where changes
occur. Thus, the output of this step is a mapping of classes and line numbers. For example, a mapping for the snippet of
code in Listing 1 is [RootPage:5]. This mapping is also useful for automatically labeling source code to execute an IFC
analysis and detect illegal flows.

In particular, there is an additional difficulty for code contributions. Since we need to analyze different software project
versions, we need to obtain the target version before building the output mapping. To do this task, we use the checkout
Git command either automatically or manually depending on the project and constraint. Additionally, we built a parser
to validate the syntax of the constraints and to generate a corresponding JSON36 containing the specification of sensitive
information and code contributions.

3.4.2 Second step - Generating SDG

In this step, we create the necessary SDG37 using JOANA.9 In these dependence graphs, graph nodes represent program
statements or expressions. Moreover, there are two kinds of edges: data dependence and control dependence.16 Data
dependence regards one statement (node) that assigns a variable which is used by another one (node) without being
reassigned underway. Control dependence edge means that the execution of one statement depends directly on the value
of a given expression, which is typically a condition clause in an if or while.

We provide as inputs the set of entry methods and the compiled system versions. These inputs are mandatory to
correctly create an SDG. In the current version of our tool, we manually choose a set of entry methods with the goal to
encompass the code contribution. Depending on the constraint, we might need to generate many SDGs in this step. For
instance, recalling the fired developer example: she could have submitted many code contributions, and consequently,
there are many different system versions to analyze. Thus, for each version, we automatically create a different SDG. At
last, this step output is a set of one or more SDG.

3.4.3 Third step - Labeling

Our tool automatically annotates information and code contributions so that we can detect flows between them in either
direction depending on the specified constraints. We use JOANA annotation mechanism to label a set of program parts
with security levels (eg, High and Low).

Based on the constraints written in Salvum and the first step output mapping explained before, our implementa-
tion automatically labels program parts that represent sensitive information for noflow construct, as High. In contrast,

http://wileyonlinelibrary.com
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program parts identified in the mapping as part of code contributions are automatically labeled as Low. To deal with pos-
itive constructs (flow and set), we use the inverse labeling strategy of noflow and noset constructs since they are
dual.38

For instance, consider again the constraint for Listing 1: UserModel {password, locality} noflow Con-
tribution

It uses the noflow construct. Therefore, the High label is automatically associated with UserModelsensitive infor-
mation stored in password and locality and the Low label is associated with code contribution. In this context, our
algorithm determines the code contribution by analyzing the Git diffbetween the commit we aim to check and its pre-
decessor. Notice that if we use the noset construct for this constraint, the High label would be associated with the code
contribution and the Low label would be associated with UserModel information.

3.4.4 Fourth step - Analyzing

In this step, Salvum automatically runs JOANA9 IFC analyses to verify source code’s adherence to the specification of
Salvum constraints. More specifically, it checks whether there are possible paths from an SDG node labeled as High to
another one labeled as Low. As a result of the analyses execution, we obtain a collection of violation warnings, which we
provide as an input to the last step: Results processing.

3.4.5 Fifth step - Results processing

Salvum creates a report to inform violations occurrences. For instance, consider Listings 1 again. The resulting report
would inform a violation, like the following:

Illegal flow from UserModel.password, UserModel.locality
to RootPage:27 at commit hsf354ks

This way, we know that there is a warning of a violation of UserModel sensitive information confidentiality to the
line 27 of RootPage class in the system project version identified by the commit hash hsf354ks. We manually check
this violation warning to determine that this code contribution introduces a violation.

4 EVALUATION

To evaluate our policy language presented in Section 3, we perform an empirical assessment focusing on finding violations
by writing Salvum policies and constraints for selected software projects and checking whether they can help developers
to reduce the effort of manual code review.

In Section 4.1, we discuss the Goal-Question-Metric (GQM) design39 that drives our evaluation in Section 4.1. Addi-
tionally, in Section 4.2, we perform the first evaluation considering highly active and well-supported software projects.
In Section 4.3, we explain our second evaluation with benchmark software projects. We make this distinction between
highly and low active projects because we believe that we should have different results. For the former, we expect to detect
a few violations whereas more violations considering the latter. Also, we discuss the threats to validity in Section 4.4.

4.1 Goal, questions, and metrics

We use the GQM39 design to better drive the evaluation process. Our goal is to check whether we can detect privacy and
security violations concerning real software projects. Besides that, we aim to determine if Salvum can reduce the effort to
find these violations. In particular, we investigate two major and two minor research questions:

• Q1- Can Salvum detect code contribution violations to sensitive information?
• Q1.1- Do developers solve violations before code contribution merging on GitHub?
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• Q1.2- Are unmerged code contributions on GitHub related to violations of sensitive information?
• Q2- Can Salvum reduce the effort to find violations of specified constraints in a set of code contributions?

To answer our research questions, we define a set of simple metrics. Regarding Q1, we use the number of violation
warnings (NVW) and Number of violations (NV) metrics. The former regards the NVW that Salvum finds among dif-
ferent project versions whereas the latter represents the subset of found violations which were confirmed by the selected
systems developers. To better understand Q1 results, we manually analyze a set of submitted pull requests for each selected
project to check whether our approach misses violations. Thus, we use the NV before merging code contributions (NvC)
metric to answer Q1.1. Additionally, to answer Q1.2, we manually check unmerged pull requests to know if they were not
merged due to violations in our context. Thus, we use the number of unmerged code contributions containing violations
(NrC)metric.

To answer Q2, we consider two metrics: Source lines of code to analyze (SA) and project versions to analyze (PA). By
using our tool, a reviewer needs to manually check whether a warning represents a real violation. Therefore, we use the
SA metric to measure the number of lines of code that this reviewer should manually analyze to determine whether the
code contribution indeed introduces the warned violation.

Besides that, we use the PA metric to measure the number of projects versions we need to manually analyze to confirm
violations of the specified constraints. For example, if we use our tool to analyze 10 project versions, and it warns violations
only for two versions, we would not need to manually examine the other eight versions to confirm the warnings.

4.2 Assessing highly active and well-supported software projects

In this section, we explain nine highly active software projects. Furthermore, we define a set of constraints for them.
At last, we describe the results we obtained. Our goal here is to answer Q1, Q1.1, Q1.2, and Q2. To do that, we use the
backward approach (Section 3). In this case, it is more interesting than the forward approach because the existing project
history has more commits, and consequently merged code contributions. Nonetheless, we plan to perform an additional
evaluation considering our forward approach in future work.

4.2.1 Selected software projects

For this assessment, we consider the following open-source Java software projects hosted on GitHub: Gitblit,9 Open
Refine,10Voldemort,11ScribeJava,12Solo,13HikariCP,14Apache Kafka,15Teammates,16and Crawler4J.17These projects have
at least 100 stars and 50 forks as well as many pull requests. Table 1 summarizes some of these projects’ characteristics.

In this context, we obtained a list of the first 300 Java projects with the criteria mentioned above. Then, we visited
each GitHub project repository webpage to choose those that would be useful for our research. Initially, we discarded
the projects that are Android applications. Furthermore, we put away projects that we could not find a set of sensitive
information by navigating through their source code in GitHub. Hence, the first nine projects that we did not discard are
considered in this section.

We noticed in the pull requests review on GitHub that there are code contribution review processes for these nine
software projects. We also noticed that two or three developers manually review the changes that other developers sub-
mit via pull requests. Therefore, we might find a few critical violations regarding the repository history. However, these
developers might have spent a long time to manually review all code contributions, and they might miss violations. The
number of selected projects is limited due to the time-consuming task of understanding the systems, which is necessary
to write relevant constraints. We discuss this threat in Section 4.4.

9http://gitblit.com
10http://openrefine.org
11https://github.com/voldemort/voldemort
12https://github.com/scribejava/scribejava
13https://github.com/b3log/solo
14https://github.com/brettwooldridge/HikariCP
15https://github.com/apache/kafka
16https://github.com/TEAMMATES/teammates
17https://github.com/yasserg/crawler4j

http://gitblit.com
http://openrefine.org
https://github.com/voldemort/voldemort
https://github.com/scribejava/scribejava
https://github.com/b3log/solo
https://github.com/brettwooldridge/HikariCP
https://github.com/apache/kafka
https://github.com/TEAMMATES/teammates
https://github.com/yasserg/crawler4j
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T A B L E 1 Characteristics of selected software projects

Project KSLOC Commits Contributors Total GitHub GitHub

Pull R equests stars forks

Gitblit 123 3.000 100 400 1.400 500

Open Refine 75 2.700 60 250 5.000 900

Voldemort 225 4.300 60 350 2.000 500

ScribeJava 5 800 90 350 4.300 1.500

Solo 41 2.000 15 190 3.900 1.700

HikariCP 17 2.600 80 250 6.000 900

Apache Kafka 113 4.700 400 4.500 7400 4.400

Teammates 145 16.600 350 3.100 500 1.200

Crawler4J 8 300 25 100 2.600 1.500

4.2.2 Policies and constraints

To answer Q1 and Q2, we analyze the selected software projects focusing mainly on their technical domain, source code,
the sensitive information they hold, and their contributors. Then, we define policies and constraints for each project with
the goal to enforce them for the selected projects. An experienced developer on a particular project could play this role.
For simplicity, we explain only those policies and constraints that helped us to detect the Gitblit problem we explained in
Section 2. However, we provide a complete list of constraints we wrote for each project in our online Appendix.17

Policy P1: User password, locality, access information, and permission cannot flow to code contributions

1 ChangePasswordPage { password , confirmPassword } ,
2 UserModel { password , l o c a l i t y } ,
3 A c c e s s P e r m i s s i o n { perm } ,
4 Reposi toryModel { a c c e s s R e s t r i c t i o n , authContro l }
5 noflow Contribution

Listing 5: Constraint C1

1 ChangePasswordPage { password , confirmPassword } ,
2 UserModel { password , l o c a l i t y } ,
3 A c c e s s P e r m i s s i o n { perm } ,
4 Reposi toryModel { a c c e s s R e s t r i c t i o n , authContro l }
5 noflow Writ t ingOps
6 where
7 WritingOps = { Logger . i n f o ( ) , Logger . e r r o r ( ) ,
8 Logger . warn ( ) , System . out . p r i n t l n ( ) , s e t C o o k i e ( ) }

Listing 6: Constraint C1’

In P1 we specify a set of sensitive information handled by Gitblit that we aim to protect. Thus, our goal is to detect
whether there is a flow between such information and code contributions. The constraints C1and C1’ written in Salvum
help us to achieve this goal. We identify the fields that initially store the set of sensitive information specified in P1, such as
password and locality from UserModelclass. The noflow construct determines a violation occurs in case there is
a flow between the set of sensitive information and code contributions. Notice that we use the Contributionidentifier,
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which implicitly defines the contributions to be analyzed. In our assessment, the Contribution identifier represents
49 Gitblit code contributions. For C1’, we consider a unique Gitblit version. This variation is useful because we can find
violations introduced by a code contribution already integrated into the repository without building the corresponding
Gitblit version.

4.2.3 Answering Q1

In particular, Table 2 illustrates the number of different software versions we analyzed, and the NV we have found for
each selected software project.

For the cases that Salvum detects a violation, we still need to manually review the code contribution. There are two
possibilities: (i) we acknowledge that there is indeed a violation, so we open an issue for the corresponding project on
GitHub, or (ii) we recognize that there is a sensitive information flow to the code contribution, but it is not harmful.
For example, a developer might submit commits containing a new authentication implementation. In this case, Salvum
detects a sensitive information flow, then we check the code contribution, and we might conclude that the developer
correctly implemented this functionality. Thus, we do not report a violation.

This scenario is typical when analyzing initial commits. In summary, the procedure to obtain the results of this eval-
uation is as follows: 1) We write constraints for a software project; 2) We run our tool to detect these constraints; 3) We
manually analyze the set of violation warnings; 4) We decide whether the warnings are real violation; 5) We report the
violations for the project developers on GitHub.

Gitblit, Voldemort, Teammates, Open Refine, and Apache Kafka present a more significant number of commits than
the other projects. Hence, we consider more versions to encompass around three years of development time as well
as different contributors. ScribeJava presents less commits, but it has more contributors than Voldemort, for instance.
Therefore, we consider 27 different versions. Our results could be biased because of the difference in the number of
versions that we consider for each project. Thus, we discuss this threat in Section 4.4. The remaining projects either
handle a few sensitive information or present fewer contributors or commits. Thus, we consider fewer software versions
for them.

These nine projects adopt manual code review for their pull-based software development through GitHub pull
requests. For each project, there is at least one developer that reviews code contributions. Additionally, we observe that
many code contributions only fix user interface presentation, typos, and configuration files. These kinds of commits do
not add or change lines of Java code, which avoids introducing violations.

In Table 2, the NVW metric results show that we found six violations warnings for the selected projects of which five
were confirmed as a violation by developers from each project, as we can see in NV results. One violation warning was
discarded by Gitblit developers because it was not a real threat. Only the path of a sensitive file was exposed and not the
file content itself.

Regarding Gitblit, we found two violations of the constraints we explained in this section. In particular, we illustrate
the output Salvum provides for constraint C1 below. We use this violation as motivating example in Section 2. This output

Project Versions NVW NV

Gitblit 49 2 1

Open Refine 10 0 0

Voldemort 52 0 0

ScribeJava 27 3 3

Solo 10 0 0

HikariCP 10 0 0

Apache Kafka 43 0 0

Teammates 10 0 0

Crawler4J 10 1 1

Total 221 6 5

T A B L E 2 Total number of warnings and violations
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indicates that there is an illegal flow of the information initially stored in password to line 284 in RootPage class at
the Gitblit version associated with commit hash efdb2b3d.

Illegal flow from UserModel.password to RootPage.loginUser()
at line 284 in commit efdb2b3d

We reported this violation, and Gitblit developers accepted it as an issue. Afterward, we submitted a pull request to fix
it. We solve it by implementing a new way of generating a hash for the cookie mechanism for Listing 1. Instead of using
password and username, we produce a random number. The pull request was accepted, and its code was integrated into
production repository. This issue remained unnoticed for 655 days. Furthermore, Gitblit developers opened an issue to
change the hash function after we warn its weakness.

Based on NVW and NV results shown in Table 2, we answer Q1 stating that Salvum can detect proper violations
of sensitive information and code contributions in the context of software projects that are highly active and
well-supported.

However, due to the low number of problems for this set of software projects, we aim to answer two secondary research
questions: Q1.1 and Q1.2.

Answering Q1.1. The answer to Q1.1 might help us unveil the reason we have found only a few violations. Thus,
one author of this work read developer discussions of at most 25 merged pull requests containing at least two messages
attached considering the nine projects. We choose 25 because while performing this analysis, we noticed the reasons for
discussions started to be repetitive, which indicates that we would have similar results for more pull requests. Additionally,
we observed that two messages indicate an initial debate on the code contributions whereas only one message suggests
that the pull request developer explains something without any replies. Indeed, most messages discuss change requests
and responses. On the other hand, pull requests without messages suggest that developers did not review it or there was
no problem and it was merged. The former case is not compelling to answer Q1.1 because there is no change request. The
latter case means that the code contribution is integrated, and consequently, we could analyze it using Salvum. Table 3
depicts the number of pull request we manually analyzed for each project.

Following References 40 and 41, we divide the types of contributions in three categories: Perfective (new functionali-
ties), Corrective (fixing issues), and Preventive (refactoring). We aimed at checking a correlation between these categories
and security-related issues, but we did not find a connection. Our goal was to analyze 25 pull requests for each project, but
Solo has only six merged pull requests with at least two messages whereas Crawler4J has only 10. Thereby, we analyzed
a total of 198 pull requests and their messages.

T A B L E 3 Manually
analyzed pull request messages Project Perfective Corrective Preventive Total Security

Related

Gitblit 11 5 9 25 0

Open Refine 8 2 15 25 0

Voldemort 7 6 12 25 0

ScribeJava 13 14 8 35 2

Solo 0 5 1 6 2

HikariCP 5 10 10 25 1

Apache Kafka 6 8 11 25 1

Teammates 9 9 7 25 0

Crawler4J 5 2 3 10 0

Total 64 61 76 198 6
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The main reason for discussions throughout these 198 pull requests in GitHub is to: (i) include or run tests, (ii) obey
development guidelines like code indentation, (iii) change behavior of new functionality, (iv) fix rebase, branch, or merge
issues, (v) explain how the proposed new functionality works and why it is useful, and (vi) fix compilation problem. The
nine projects present discussions mostly about these six reasons.

We can observe in Table 3 that security-related pull requests are rare for our sample. Three of them are Perfective pull
requests, and the other three are Corrective. The discussion attached to these six pull requests are related to (i), (ii), and
(vi). However, there are no comments about privacy and security violations of sensitive information. Nonetheless, we
analyzed the code of these six pull requests, and none of them fixed violations.

In this way, these manually analyzed pull requests ratify our previous findings with Salvum. Only a small amount of
code contributions is associated with privacy and security of sensitive information. Thus, regarding our sample, it is not
unusual that we find a few violations of our specified constraints for projects that have an organized way of contribution.

We did not find violations that developers solved before merging code contributions for our sample. Thus, the
NvC metric is zero which leads us to answer Q1.1 stating that there is no evidence on GitHub that developers
solved these violations for our sample.

Answering Q1.2. To answer Q1.2, one author of this work manually analyzed the source code of at most five
unmerged pull requests that have already been closed. Hence, developers will not merge it in the future as they cur-
rently are. Manually reviewing code contributions is a time-consuming task. However, we plan to extend this analysis in
future work.

The corresponding results might bring evidence that we missed violations because the code contributions that would
introduce them were not integrated into the repository. In this case, we do not need to analyze the discussions associated
to pull requests because a developer can close it without demanding changes to the submitter.

We search for violations of the constraints we defined for each project. Thus, while manually reviewing, we have in
mind mainly where and how the code contribution deals with the set of sensitive information. The procedure to collect
data to answer Q1.2 for each project is as follows. First, we search for the five most commented pull requests that are
closed and unmerged. Second, we read the last comments to check why developers rejected the pull request. Third, we
search for occurrences of sensitive information on the resulting diff. Lastly, we decide whether those occurrences are
violations.

We performed this procedure for 45 pull requests, which leads to 39517 lines added, changed, or removed. However, we
skipped non-Java code and test implementations because they cannot introduce violations in our context. For this reason,
the total amount of Java code lines that we read was reduced. Table 4 summarizes our manual analysis results. Despite
the fact that we could not find a connection between privacy and security pull requests and Lientz et al40 categorization,
we use it to keep the pattern equal to Table 3.

As we discussed before, security-related pull requests are rare for our sample. This way, only two ScribeJava pull
requests approach privacy and security properties. They implement changes that print access tokens on the console.

Project Perfective Corrective Preventive

Gitblit 4 1 0

Open Refine 2 1 2

Voldemort 3 0 2

ScribeJava 3 0 2

Solo 2 2 1

HikariCP 3 2 0

Apache Kafka 3 0 2

Teammates 2 1 2

Crawler4J 3 0 2

Total 25 7 13

T A B L E 4 Manually analyzed unmerged pull requests
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However, we did not classify them as violations because these operations are implemented in classes that exist only as
examples, that is, real systems that use ScribeJava do no use them. Therefore, the Number of unmerged code contributions
containing violations (NrC) is zero for our sample.

We answer Q1.2 stating that the unmerged code contributions on GitHub are not related to violations of sensitive
information for our sample.

This answer brings evidence that we did not miss violations because the code contribution that could have introduced
them was not merged. Regarding the analyzed sample, we found a few violations. Therefore, we do not have evidence that
these violations existed on GitHub project, but they were detected and fixed during the code review process. This way,
one possibility is that the developers of these projects are experienced, so they introduce a little amount of these kinds of
violations. Another possibility is that these violations are rarely introduced even for inexperienced developers, or they do
exist, but they are fixed at the local repositories.

At last, the main reasons for the pull requests rejection were: (i) the submitter did not respond a change request for
a long time, (ii) another pull request replaces the rejected one, and (iii) the new functionality implemented in the pull
request is invalid.

4.2.4 Answering Q2

Moreover, to assess whether Salvum reduces the effort (regarding project versions and line of code to review) to manually
review these violations that Salvum detects, we consider Q2. Table 5 illustrates the results for PA (Project versions to
analyze) and SA (Source lines of code to analyze) metrics. For instance, we needed to perform a manual code review for
only three versions of the Gitblit project. Salvum did not detect violations regarding the other 46 versions. Therefore, in
the worst case, a manual code reviewer would need to consider the 49 versions. This scenario could happen for cases that
we need to analyze all the contributions submitted by a particular developer. Table 5 also illustrates the percentage of
total PA. For example, PA with Salvum for Gitblit is three, which means that we need to analyze only 6,12% of the total
project versions.

Additionally, there are 6012 lines of code contribution scattered across the 49 versions. These numbers represent lines
of Java code added, changed, or removed in considered code contributions. Thus, the total number of lines to initiate a
review is 23 053. Besides that, a reviewer would need to review lines of code that were not introduced by code contributions
but are related to them. However, we focus on this set of initial lines to start a code review. Since Salvum shows where
the violations occur, we reduce the number of lines to read and confirm or discard the issue. Thus, the SA with Salvum
for Gitblit is 32. In summary, we needed to consider 0.53% of code contribution lines for Gitblit, 0.08% for ScribeJava, and
4.45% for Crawler4J.

T A B L E 5 Comparison of
the number of revisions with
and without Salvum

Project PA Without PA With Percentage of SA Without SA With Percentage of

Salvum Salvum Total Salvum Salvum Total

Gitblit 49 3 6,12% 6.012 32 0,53%

Open Refine 10 0 0% 578 0 0%

Voldemort 52 0 0% 5.040 0 0%

ScribeJava 27 1 3,7% 4.496 4 0,08%

Solo 10 0 0% 952 0 0%

HikariCP 10 0 0% 216 0 0%

Apache Kafka 43 0 0% 3.402 0 0%

Teammates 10 0 0% 1.863 0 0%

Crawler4J 10 1 10% 494 22 4,45%

Total 221 5 - 23.053 58 -
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Project Number of Violation Warning Number of Violations

Blojsom 34 33

Personalblog 44 43

GridSphere 4 2

SnipSnap 1 1

Lutece 1 1

Total 86 80

T A B L E 6 Total number of warnings and
violations

We manually reviewed all the 221 project versions and their 23 053 lines. Indeed, we could not find additional viola-
tions. However, an experienced reviewer could decrease the number of lines to be reviewed. For example, there might be
lines of code corresponding to tests or configuration files. In these cases, there is no change for Java core code, and con-
sequently, no violation is introduced. On the other hand, our tool has the advantage to precisely show from and to the
sensitive information flows. In this context, even an experienced reviewer would have to put lots of effort to find inter-
procedural dependencies. For instance, the task of identifying violations of sensitive information that flows throughout
many methods of different classes.

We answer Q2 stating that Salvum reduces the effort to find violations of the specified constraints under JOANA
IFC analysis limitations.

At last, we acknowledge that we need further observational study to better understand how reviews are done focusing
on security and privacy. Moreover, a controlled experiment would be useful to provide better estimates of effort savings.
For instance, we could estimate the additional effort for developers to write constraints in Salvum and to use our tool. We
plan to do it in future work.

4.3 Assessing benchmark software projects

For this assessment, we consider five benchmark software projects used in previous study.12,21 We selected the projects
that are still available either in SourceForge42 or GitHub. From a total of 36 projects, we discarded the unavailable ones
and also those that we could not correctly build or identify a set of sensitive information.

Different from the nine projects in Section 4.2, the current ones are benchmarks. This way, other researchers have
previously introduced a NV throughout their source code. Additionally, we define a set of constraints for them in a similar
way of Section 4.2. Our goal here is to answer Q1 considering the latest version of each project.

We select the following open-source and Java written software projects: Blojsom,18 Personalblog,19 GridSphere,20

SnipSnap,21and Lutece.22 Table 6 illustrates the NVW for each selected software project. These warnings represent poten-
tial violations to the policies and constraints written for each project. Blojsom and Personalblog are not pull-based
development. Thus, there is no pull request to analyze. Additionally, GridSphere and SnipSnap were migrated from
SVN43 to Git.35 Therefore, they do not have GitHub pull requests. In turn, Lutece is currently developed on GitHub,
and it has pull requests. Although, this project does not have an organized code review process, we include it in our
assessment.

Salvum warned 86 violations for these projects of which we confirmed 80. This way, we looked carefully to verify
whether it is a violation because we could not report them since contributors do not develop these projects anymore. We
did not confirm six reported warnings because they were a Java reflection usage, and JOANA does not support it.33 Thus,

18https://sourceforge.net/projects/blojsom/
19https://sourceforge.net/projects/personalblog/
20https://github.com/brandt/GridSphere
21https://github.com/thinkberg/snipsnap
22https://github.com/lutece-platform/lutece-core

https://sourceforge.net/projects/blojsom/
https://sourceforge.net/projects/personalblog/
https://github.com/brandt/GridSphere
https://github.com/thinkberg/snipsnap
https://github.com/lutece%2010platform/lutece%2010core
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it generates a false-positive because JOANA conservatively establishes that there is a flow for every reflection usage.16

Listing 7 shows the constraint C2 as an example of constraints we defined for Blojsom.

1 AtomAPIServlet { password } ,
2 XMLRPCServlet { password } ,
3 BloggerAPIHandler { password } ,
4 WeblogAPIHandler { password }
5 noflow Writeops
6 where Writeops = { Logger . e r r o r ( ) , Logger . i n f o ( ) }

Listing 7: Constraint C2

Below, we show the output our tool provided for C2 in Listing 7. Line 452 contains a call to a Logger.error()
method withuserid andpassword arguments. Therefore, it represents a violation because developers should not print
sensitive information such as passwords in log files. It is a well-known problem documented in the OWASP guides.20 The
majority of problems we found in Blojson is similar or related to leaking sensitive information through writing operations.
Thus, we do not discuss them here because it would be repetitive.

Illegal flow from BloggerAPIHandler.password
to BloggerAPIHandler.editPost() at line 452 in commit 71e96cb

Other tools have also found many privacy and security issues for Blojsom.12,21 However, this project is not developed
for a long time. Therefore, developers did not fix its problems. The other projects present similar problems. Thus, we
omit in this work for brevity. Our results here are different from the study in Section 4.2 because we consider benchmark
software projects. Thus, since there is no code review process, it is natural that many violations are introduced by code
contributions.

Based on NVW and NV results shown in Table 6, we answer Q1 stating that Salvum can detect proper violations of
sensitive information in the context of benchmark software projects.

4.4 Threats to validity

In this section, we discuss the threats to validity of our work. We separate the threats as: Construct, Conclusion, External,
and Internal validity.44

Construct validity: In Section 4.2, we evaluate effort using approximations: lines of code and project versions to
analyze. However, we do not consider other metrics such as the time to learn and define the policies and constraints as
well as the time to learn how to perform a manual code review. To mitigate this threat, we could execute a controlled
experiment in which we assign tasks to reviewers. These tasks would be related to finding violations. Therefore, we could
measure the difference of time to execute these tasks with and without Salvum. We might bring more insights about how
our tool improves productivity. This assessment is an important future work in our context.

Another threat related to the metrics we use in this work is related to the fact that they are approximations. For
example, an experienced developer could need to review a lower number of lines of code to find the same violations
comparing to an inexperienced developer. This way, the aforementioned controlled experiment could also mitigate this
threat if we select developers with different levels of experience. Also, because the metrics are approximations, we might
have introduced a bias in the number of lines of code that we need to review to find the violations. Only one author of this
work manually reviewed the code contributions that Salvum identified violation warnings. Although we have academic
experience in code review, it would be interesting to have many reviewers to decide the total lines of code that we need
to consider for identifying the violation.
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Conclusion validity: To answer the research questions Q1, Q1.1, Q1.2, and Q2, we used small samples for selected
projects and reviewed pull requests. This limitation might introduce a bias in our conclusions. The small sample of soft-
ware projects is due to the time-consuming task of studying the systems to be able to write relevant constraints. We tried
to contact developers of some of these projects, but we did not receive replies. The only way to receive feedback from
developers was to open an issue regarding the detected violations and tag the developer that introduced it. Thus, we could
not select a higher number of projects. The small sample of pull request is also because of the time-consuming task of
manually understand the discussions and source code. Additionally, only one author was responsible for both tasks.

External validity: We acknowledge that we might have a small sample to answer Q1 and Q2. Additionally, the
projects are only Java-written and open-source. Therefore, we cannot guarantee that our results apply to other systems
written with different programming languages or proprietary software. However, we still could find real violations, and we
could reduce the effort to manually review code contributions. In this work, we implement our language using static IFC
analysis. Therefore, we cannot generalize our results to other types of analysis, such as dynamic45-47 or Bayesian-based.48

However, implementing policy languages using these alternative techniques could open an interesting avenue of research.
We consider these alternatives as future work. Additionally, we cannot generalize our results for projects that allow
untrustworthy developers to write Salvum constraints. This way, they could accept vulnerable code contributions.

In Section 4, we define a set of policies and constraints for our selected software projects. We cannot assure, neces-
sarily, that we could enforce these policies and constraints for other systems. A number of them are specifically related
to the domain and source code we want to analyze. However, we could reuse some policies across different projects. For
example, Policy P1 in Section 4.2.2 states User password, locality, access information, and permission cannot flow to code
contributions. We could consider P1 for other projects as long as they have user passwords, locality, access information,
and permission. Certainly, we would still have to define constraints for P1, as we showed in Listing 6. Therefore, this
difficulty to reuse policies and constraints is both a threat and a Salvum drawback.

Internal validity: To answer Q1.1 and Q1.2, we manually analyzed many pull requests code and associated com-
ments. However, we might have introduced bias because we also defined the policies and constraints for the code
contributions. Thus, we might have missed other violations that were not related to our constraints. Despite the fact that
Q1.1 and Q1.2 are secondary research questions in this work, our results comply with the results we obtained using
Salvum to answer Q1. Anyway, it would be interesting to have more reviewers to perform the procedure of manually
reviewing the selected set of pull requests.

In this work, we studied the selected projects to understand their purpose, the sensitive information they handle, archi-
tecture, and how developers contribute. Thus, we know how to define some policies and constraints for these projects.
However, we cannot guarantee that all the sensitive information is specified in our constraints. To be able to define other
relevant constraints, we tried to contact developers of the selected projects, but we got no response. When we manu-
ally reviewed the pull requests to answer Q1.1and Q1.2, we also tried to observe additional sensitive information that
we missed. This way, we could define more policies and constraints to mitigate this drawback. Nonetheless, developers
with vast experience in a particular software project could reduce this threat by establishing their Salvum constraints. In
Section 4.3, only one author of this work manually decided whether a violation warning is a real problem. Ideally, at least
two researchers should make these decisions. This way, we would reduce bias because there would be a discussion before
determining a violation occurrence. In contrast, this issue does not happen in Section 4.2 because we report the violations
on GitHub, directly to the project developers. Therefore, these developers decided whether we found a real violation.

Regarding performance for industry adoption, JOANA analysis execution might be slow for large software projects,
such as Voldemort. Depending on the number of lines of a code contribution, it takes up to a day to finish execution. This
delay happens even using our powerful hardware (Intel Xeon E7 with 64 gigabytes of RAM). It occurs mainly because the
SDG37 gets very large for such cases. Thus, this limitation on execution time affects our results because we might have
missed violations for the cases that we could not execute JOANA.

In Section 4.2, we obtain our results from a different number of software projects for each project. Therefore, we could
have found more violations for some projects due to a higher number of versions. For example, we consider 49 Gitblit
versions and only 10 Open Refine. We found one violation regarding Gitblit and none regarding Open Refine. This way,
we could have found more violations if we considered more Open Refine versions.

5 RELATED WORK

In this section, we present related work. First, we discuss manual code review and some existing IFC analysis tools. Lastly,
we approach related language-based information flow.
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Manual code review. There are some documented guides to improve the execution of manual code review. These
guides provide information on how to find specific kinds of vulnerabilities. Thus, a reviewer can focus on user inputs
and access to databases, for example. The Open Web Application Security Project (OWASP)27 provides a number of these
guides. Therefore, a reviewer can follow it to find privacy and security violations for Java projects, .NET projects, etc. They
also provide a list of standard vulnerabilities detailing how they might appear in source code and how to fix them. Another
widely used guide is the CWE.19 It provides a set of software weaknesses to better understanding and management of
software weaknesses related to architecture and design. Thus, reviewers can consult this guide to understand and discuss
privacy and security violations, which could also improve their manual code review tasks.

Nonetheless, as we explain throughout this work, manual code review is costly and time-consuming. These guides
help to reduce these factors, but automated tools could improve productivity even more. Thus, our solution does not
replace manual code review tasks, but we decrease its effort.

IFC analysis tools. TAJ12 is a static analysis tool designed to detect four of the well-known security vulnerabilities:
Cross-site scripting, Injection flaws, Malicious file executions, and information leakage and improper error-handling
attacks. Each of these vulnerabilities can be cast as a problem in which information associated with a label High flows
to another program part associated with label Low without being endorsed, which means that the information is not
validated or corrected. This tool works for Java Web projects and it is also a WALA49 client.

In this context, TAJ defines implicit constraints, which are transparent to its users, to detect occurrences of these four
vulnerabilities in Java Web projects. However, this tool would need several modifications to allow developers to specify
constraints as we show in Section 3, and to for other technical domains than Java Web projects.

Another related static analysis tool is the Flowdroid,11 a static analysis system specifically tailored to the Android
platform. It is designed to analyze Android applications bytecode and configuration files to find potential privacy leak.
To label program parts as High and Low, it uses an auxiliary tool named Susi,50 which sweeps Android API to find where
potentially sensitive information is stored and potentially dangerous methods, such assendSMS(). Therefore, Flowdroid
automatically defines implicit constraints and run its analysis to find violations.

Similar to TAJ, Flowdroid is designed to work for a specific platform. Also, we would need to make several adaptations
to use Flowdroid for code contributions. Other tools also present similar drawbacks for our context.

Scandroid13 is a tool to check Android applications. It extracts security specifications from manifests that accompany
such applications, and checks, whether information flows through those applications are consistent with those speci-
fications. Thus, Scandroid automatically defines constraints based on an auxiliary specification, such as manifest files.
Mainly, this tool is used to guarantee that an Android application obeys user permissions.

Different from TAJ and Flowdroid, Scandroid constraints might vary depending on these auxiliary specifications.
However, we cannot specify our constraints to detect the problems we introduced in Section 2. To use Scandroid anal-
ysis, we would need to drastically change its source code. Thus, like Flowdroid, this tool is useful for auditing Android
applications, but they do not work for other technical domains.

Taintdroid46 is another related tool. It is a dynamic IFC analysis system capable of simultaneously tracking multiple
Sources of sensitive information for the Android environment with the cost of performance overhead. Different from the
other presented tools, Taintdroid adopts a dynamic analysis. However, it also defines implicit constraints to find illegal
information flow when applications are executing. As its main drawback, Taintdroid only supports explicit flows. Thus, its
analysis would not be able to identify the problem introduced in Listing 1. Furthermore, Tripp et al propose a Taintdroid
new approach to address privacy enforcement as a learning problem, relaxing binary judgments into a quantitative or
probabilistic mode of reasoning.48

Salvum does not provide dynamic analysis to check whether constraint violations occur at runtime. This limitation
could be an exciting study for future work. However, it is out of the scope of this work because we would have to ultimately
implement a new dynamic IFC analysis so that it could work for our scenarios.

Moreover, ANDROMEDA21 statically detects flows wherein information returned by Source reaches a Sink without
being adequately endorsed by a εdowngrader,ε that is, the information has not been validated. ANDROMEDA is capable
of detecting typical information flow-related vulnerabilities,27 such as Cross-site scripting and SQL Injection, for a web
application. To work for different web frameworks and libraries, ANDROMEDA supports the definitions of extensions so
that it works for Struts, Spring, JSF, etc. The purpose and use of this tool are similar to JOANA.

However, JOANA allows more flexibility regarding precision and performance configuration. Furthermore,
ANDROMEDA is not as precise as JOANA is4 since the latter guarantees noninterference.16,51 Anyway, Salvum is not
high attached to JOANA’s implementation. So, we can change our IFC analysis to ANDROMEDA in the case we
need it.



1926 ANDRADE and BORBA

The F4F (Framework For Frameworks) tool52 is also a related work. It is designed to execute IFC analysis of
framework-based web applications using a specification language called WAFL for describing the behavior of such
frameworks. Thus, to identify privacy and security violations for the scenario, we present in Section 2, we would
have to add a WAFL generator for each framework our selected software projects use (Section 4.2.1). For example,
Gitblit uses the Apache Wicket53 framework and Open Refine uses Java Servlet API. On the other hand, Salvum
requires only the specification of simple constraints, instead of writing a whole specification language for each selected
system.

Language-based information flow. There are languages designed to support IFC. Jif10,54 is a security-typed pro-
gramming language that extends Java with support for IFC. Thus, developers should modify the system source code
to add security types. Therefore, Jif implementation can analyze type errors. For instance, if one variable with secu-
rity type High is assigned to another variable with security type Low a compilation error occurs. In this context, it
would be hard to attribute security types for different program versions, as we automatically do (Section 3). Addition-
ally, Jif tangles constraint code with program code, which might hinder code maintenance and understanding since
according to the principle of Separation of Concerns32 one should be able to implement and reason about each concern
independently.

The Checker Framework24 extends Java’s type system to let software developers detect and prevent errors in their
Java programs. It provides some checkers for different purposes, like Nullness, Format String, and Constant value
checkers. One of them is related to our work: Tainting checker. It defines a type system that uses mainly two types:
@Untainted and @Tainted. The @Untaintedannotation is equivalent to JOANA’s Low label, whereas @Tainted
is equivalent to High. Thus, if we try to assign an @Tainted variable to a @Untainted one, a compilation error
occurs.

Although fast, this tool would demand a significant effort from developers to manually apply Checker Framework
types in systems’ source code. This task would be even more difficult when we need to refer to code contributions because
we would use these types to different versions of the same system. Besides that, constraint code gets tangled with and
spread across system core code, which might harm program maintenance.32

Joe-E26 is based upon the Java programming language. It adds some restrictions (taming Java API) to define a
subset of Java that provides privacy and security properties of an object-capability language, which says that pro-
gram state in objects cannot be read or written without a reference. This mechanism is used to guarantee the
Principle of Least Privilege.23 However, to use Joe-E to solve the problems presented in Section 2, we would have
to make several changes in the source code so that it could compile. Notice that some wide used classes like
java.io.File have restrictions in this language, such as the exclusion of some methods. Thus, it would be unfea-
sible to change the source code of several projects, primarily when we work with code contributions since it deals
with different source code versions. Caja55 is also a similar object-capability language, but it is designed to work with
JavaScript.

Yang et al developed a functional constraint language, named Jeeves, to protect sensitive information.15 It is a Scala
programming language extension for privacy policies. Its goal is to enforce these policies to filter the output of any function
in the system based on context. For example, if Alice is friends with Bob, she can see his exact location (eg, Informat-
ics Center, UFPE, Recife). On the other hand, people that are not friends with Bob can only see part of this location
information (eg, Recife). Moreover, Jeeves emphasizes the separation of policies and system core code.

Salvum does not support filtering the output, which, indeed, is useful for some situations. Instead, Salvum currently
allows negative and positive constructs. It means that the information cannot flow at all, or that only specific information
can flow, which does not specify how fine-grained this information is. However, Jeeves works only at runtime. Thus, to
prevent the problems we present in Section 2, Jeeves would have to support references for code contributions similar to
Salvum.

Johnson et al provide a generic query language for program dependence graphs to find different kinds of
vulnerabilities14 called PIDGIN. They check if the query resulting program dependence subgraph is not empty for a par-
ticular constraint, which configures a violation. We also allow developers to write policies to detect illegal flows from
sensitive information to specific operations like logging, as we showed in constraint C1’ in Section 4.2.2. However, we
found violations of policies considering code contributions. PIDGIN does not support these kinds of policies. Indeed, the
authors did not find any violation of their case studies.14

Finally, Apel et al56 investigate some shortcomings of object-oriented modifiers, such as public or private, that
limits expressiveness of feature-oriented languages.57 Thus, they propose three new modifiers: feature to limit access
to the feature in which the variable is defined, subsequent to limit the access to the feature containing the variable and



ANDRADE and BORBA 1927

all features composed subsequently,58 and public to make the variable globally available. However, this solution does
not support Salvum’s flexibility to define different kinds of policies.

6 CONCLUSIONS

This work introduces a policy language named Salvum to protect sensitive information confidentiality and integrity
from code contributions. Our language allows the specification of constraints that should be enforced for systems of
different technical domains. Developers can use Salvum to enforce these constraints either before or after integrating
the code contributions. By checking before, we can prevent violations from being introduced in the system code. This
scenario is adequate for cases that we must analyze the existing project history. For example, it could be necessary to
enforce Salvum constraints to detect violations of sensitive information confidentiality and integrity for code contribu-
tions that an untrustworthy developer submits. On the other hand, by checking after, we can identify violations that
were introduced by code contributions, that is, they are already merged into the repository. For instance, it could be nec-
essary to enforce Salvum constraints to detect violations of sensitive information confidentiality and integrity for code
contributions submitted by a fired developer.

We evaluate our approach in two different ways. First, we specify Salvum constraints to detect violations of sensi-
tive information in nine highly active and well-supported selected software project. Our results show that even to these
projects, which present an organized code review process, we still can find code contribution violations of sensitive infor-
mation. Second, we perform a similar assessment with five benchmark software projects. In this way, our results indicate
that we can find a higher NV for these kinds of projects.

As future work, we intend to extend this study in several directions. In this work, we only enforce constraints for
code contributions. However, we could also specify policies and constraints for features.59 We believe that this extension
could identify harmful feature interactions or configurations. Also, we intend to conduct more experiments regarding the
practical use of Salvum. For instance, one idea is to empirically study developers using our language during the evolu-
tion of a real project. Recently, JOANA developers added support for Android library. However, it only works for small
toy applications since they still need to implement more optimization for the SDG creation. We tried to consider Android
applications for this work, but we could not generate an SDG even for a small Google Play application.23Nonetheless,
when this support becomes more robust, we plan to use Salvum to investigate Android applications. Additionally, instead
of creating a whole new SDG for each system version, we could change only nodes and edges corresponding to the differ-
ences introduced by a code contribution. This improvement would probably decrease the time to analyze multiple system
versions. Moreover, we plan to extend our evaluation by including at least another researcher to review the set of pull
requests that we manually analyzed. This extension could reduce potential bias in our results. Also, we could perform
additional analysis to better understand the reasons why developers introduce violations. To achieve that, we intend to
collect a significant amount of code review comments for each software project. Then, we could study the collected data
and draw interesting conclusions.

Regarding Salvum specification, we could improve it in different ways. First, we could add a declassification feature.
It allows the security level (eg, High or Low) of sensitive information to be lowered as means to relax the specified con-
straint. For example, we can specify a constraint that determines user password cannot flow to operations that save it in
a database unless it is encrypted before. Inspired by AspectJ wildcards,60 we could allow developers to write constraints
like this one: Authentication {*} noflow Log where Log = {Logger.*(..)}. This constraint specifies
that any information initially stored in any Authentication class variables cannot flow to any method defined in
Loggerclass. Besides that, developers should have the possibility to declare variables that could hold definitions used
in more than one location. This improvement would reduce constraint code duplication. Furthermore, Salvum could
support more general constraints. For instance, developers could write this constraint for MVC (Model-View-Controller)
projects: Model.Userpassword noflow View.Page.textArea. It would help to detect whether there is a flow
from a password defined in Userclass on the Model layer to a text area defined in the Page class on the View layer.
Another interesting language extension would be to support the specification of interfaces or superclasses for the oper-
ations listing constructs. Therefore, we could allow a reduction in the number of methods that we need to declare.
For instance, if Logger is an interface in WriteOps = {Logger.info(), Logger.error()}, our tool would

23https://preview.tinyurl.com/yauwyvsj
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automatically identify the classes that implement Logger so that we could also detect violations for them without
explicitly declaring their methods.
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