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Abstract—Branching and merging are common practices in
collaborative software development. They increase developer
productivity by fostering teamwork, allowing developers to
independently contribute to a software project. Despite such
benefits, branching and merging comes at a cost—the need to
merge software and to resolve merge conflicts, which often occur
in practice. While modern merge techniques, such as 3-way or
structured merge, can resolve many such conflicts automatically,
they fail when the conflict arises not at the syntactic, but the
semantic level. Detecting such conflicts requires understanding
the behavior of the software, which is beyond the capabilities of
most existing merge tools. As such, semantic conflicts can only
be identified and fixed with significant effort and knowledge
of the changes to be merged. While semantic merge tools have
been proposed, they are usually heavyweight, based on static
analysis, and need explicit specifications of program behavior. In
this work, we take a different route and explore the automated
creation of unit tests as partial specifications to detect unwanted
behavior changes (conflicts) when merging software.

We systematically explore the detection of semantic conflicts
through unit-test generation. Relying on a ground-truth dataset
of 38 software merge scenarios, which we extracted from
GitHub, we manually analyzed them and investigated whether
semantic conflicts exist. Next, we apply test-generation tools
to study their detection rates. We propose improvements (code
transformations) and study their effectiveness, as well as we
qualitatively analyze the detection results and propose future
improvements. For example, we analyze the generated test suites
for false-negative cases to understand why the conflict was not
detected. Our results evidence the feasibility of using test-case
generation to detect semantic conflicts as a method that is
versatile and requires only limited deployment effort in practice,
as well as it does not require explicit behavior specifications.

Index Terms—Differential Testing, Semantic Conflicts, Behav-
ior Change Detection

I. INTRODUCTION

Branching and merging is a common practice in collaborative
software development. It facilitates effective teamwork, allow-
ing developers to independently contribute to the same project.
Still, branching and merging comes with costs, including the
need of resolving conflicts that are detected by merge tools
when integrating code changes. Depending on project charac-
teristics [1], [2], such merge conflicts might often occur [3],
[4], [5], [6], [7], [8], [9], even when using more advanced
merge tools [10], [11], [12], [13], [14], [15], [16] that explore
language syntax and static semantics to avoid spurious conflicts.

While many merge conflicts are easy to fix, some of them can
only be fixed with significant effort and knowledge of the code

changes to be merged. This can negatively affect development
productivity, and even compromise software quality in case
developers incorrectly fix conflicts [17], [6], [18]. To avoid
dealing with merge conflicts, developers sometimes even adopt
risky practices, such as rushing to finish changes first [19], [17]
and partial check-ins [20]. Similarly, partially motivated by the
need to reduce merge conflicts, development teams have been
adopting techniques such as trunk-based development [21],
[22], [23] and feature toggles [24], [21], [25], [26].

Although these practices might reduce the occurrence of
merge conflicts, there is no evidence that they are effective for
resolving or even detecting so-called test [8] and production
conflicts, which are only observed when running project tests
and using the system in production. As such, they are more
serious, because they reveal software failures. In fact, some of
the practices mentioned above might even aggravate the costs
of test and production conflicts, which are special kinds of
what we here call semantic conflicts.1 To make matters worse,
we expect semantic conflicts to cost more than merge conflicts,
as they are often harder to detect and resolve, and might end
up negatively affecting users.

Resolving merge conflicts is often simpler, because it
mostly involves reconciling incompatible independent textual
changes in the same area of a file. Semantic conflicts are
harder, especially when resolution occurs long after conflict
introduction, because they involve reconciling behavioral
semantic incompatibilities—as when the changes made by
one developer affect a state element that is accessed by code
contributed by another developer, who assumed a state invariant
that no longer holds after merging. In such cases, textual
integration was automatically performed generating a merged
program, a build was created with success for this program, but
its execution lead to unexpected behavior caused by unplanned
interference between the developers changes—the behavior of
the integrated changes does not preserve the intended behavior
of the individual changes. Horwitz et al [27] have put this more
formally: two contributions (sets of changes) to a base program
semantically conflict—that is, interfere in an unplanned way—

1This relates two conflict terminologies; one based on the development phase
in which a conflict is detected, and the other based on the language aspect
that causes a conflict. We use merge conflict and textual conflict as synonyms.
Build conflict refers to syntactic and static semantic conflicts. Behavioral
semantic conflict refers to test and production conflicts (and undetected ones).
For brevity, hereafter we omit the “behavioral” term in spite of focusing only
on behavioral semantic conflicts in the paper.



when the specifications they are individually supposed to satisfy
are not jointly satisfied by the program that integrates them.

To help reduce the branching and merging costs associated
with semantic conflicts, we need merge tools that are able to
detect such conflicts, going beyond textual line-based merge
tools currently used in practice [28]. Previous work [27], [29]
proposes semantic merge tools that rely on static analysis and
model checking for detecting conflicts.

In this paper, we assess to what extent a semantic merge
tool could rely on unit test generation to reveal interference
between developers’ changes (say commits in branches) that
should be merged. The core idea we propose and assess is to
use generated tests as partial specifications of the code revisions
(say L and R, for left and right) resulting from the changes.
The tests will then partially capture the effect of the changes on
the behavior of L and R. Roughly, a test that passes on L and
breaks on the base version B (the most recent common ancestor
to L and R), partially reveals the intention of the change that
lead to L. If that same test breaks in the merged version M,
assuming the integration was carried on with a textual merge
tool, we know that the changes that lead to R likely interfere
with the changes that lead to L, making the test fail. This
summarizes the criteria we use to detect that R interferes with
L; we use similar criteria for detecting interference in the
opposite direction. In fact, behavior that could be observed
by running L can no longer be observed in M, which simply
integrates to L the changes made by another developer.

To evaluate the potential of unit test generation to reveal
interference, we apply widely recognized test generation tools
(EvoSuite [30], [31] and Randoop [32]) to a sample of 38
merge scenarios—quadruples (B,L,R,M) formed by a merge
commit, its parents, and a base—in which integrate changes to
the same method or field declarations, as when two developers
independently change the same methods and later integrate
the changes. These scenarios come from open-source Java
projects, and were either mined by our scripts or used in
previous studies [14], [29], [33]. For each merge scenario, we
invoke EvoSuite (the standard and the differential version) and
Randoop, and check their effectiveness in detecting interference
following our test based criteria; strictly checking semantic
conflict would require access to the specifications of the changes
or knowledge about the developers intentions. We also invoke
EvoSuite and Randoop on slightly transformed versions of the
original merge scenarios (see Sec. III-B1), to check whether the
transformations we apply improve testability and the potential
of unit tests in our context. This way, we are able to measure the
effect of the code transformations we apply, and the contribution
of each unit test generation tool. For the scenarios where the
test generation tools fail to detect an existing interference, we
analyze the causes of the failure. This sheds light on how the
underlying unit test generation tools could be improved.

Our results show that, by first applying the transformations,
the test generation tools can detect interference in only four out
of 15 changes on same declarations(in three merge scenarios)
that in fact suffer from interference between the integrated
changes. Although this results in a small true positive rate, the

generated tests lead to no false positives according to our inter-
ference criteria—the tools generated no test that satisfies our
criteria for the merge scenarios in our sample that do not suffer
from interference. This suggests that semantic merge tools
based on unit test generation, as we propose, can help develop-
ers to detect semantic conflicts early, that would otherwise reach
end users as failures. The associated benefits are likely achieved
with small false-positive costs. However, with the current ca-
pacity of the test generation tools, developers cannot solely rely
on such semantic merge tools for detecting semantic conflicts.

The transformations improved testability in two of the
four detected interference cases, suggesting that they might
be useful for interference detection. Differential EvoSuite
detected interference in the four scenarios, while the standard
EvoSuite succeeded in two scenarios, and Randoop in only
one scenario. The identified improvements reflect three main
problems highlighting the need for creating relevant objects
required for the declarations holding the conflict, and relevant
assertions exploring the propagated interference. For some
false-negative cases, we identify and categorize improvements
that could benefit unit test generation tools. Additionally, we
provide our study sample as a dataset of merge scenarios with
source code, working builds (which are necessary for running
tests), and interference ground truth. This can be used to run
new studies with less effort, and replicate ours.

II. MOTIVATING EXAMPLE AND BACKGROUND

To illustrate the notion of behavioral semantic conflict we
explore in this paper, consider the example in Fig. 1. The
illustrated class Text results from a merge that integrates the
change in green (Line 6 was added, say from a revision L)
with the change in red (Line 8 was added, say from a revision
R). This example is inspired by a real merge commit from
the project Jsoup.2 The other code lines originate from a base
revision B, that is, the most recent common ancestor of L and
R.3 As the method call in Line 7 separates the two changes
to be integrated, there is no syntactic merge conflict in this
case, and we cleanly obtain the syntactically valid class in the
figure. We can then compile, build, and execute it.

The intention of the developer who created the revision L, say
developer Green, was to extend the method cleanText(),
which does some string cleaning through side effects, to also
remove duplicated whitespace in the text by adding the method
call normalizeWhitespace(), since the goal of her
development task was to make sure that the resulting text had no
such duplications. The intention of developer Red, who created
revision R, was to clean the text by removing consecutive
duplicated words as in the string “the the dog.” Red, however,
was not aware of the task allocated to Green and implemented
the removal of duplicated words without eliminating whitespace
between them, resulting in “the dog” for our string example.

This shows that, although Green’s implementation is correct
(it conforms to the implicit specification it is supposed to

2https://github.com/jhy/jsoup/commit/a44e18a
3For simplicity, we assume a single most recent common ancestor. With

so-called criss-cross merge situations in git, there could be more than one.

https://github.com/jhy/jsoup/commit/a44e18aa3c1fcd25a68a5965f9490d8f7d026509


1 class Text {
2
3 public String text;
4
5 void cleanText() {
6 + this.normalizeWhitespace();
7 this.removeComments();
8 + this.removeDuplicatedWords();
9 }

10 }

Fig. 1. A merge of two changes (each parent added one of the highlighted
lines) that are semantically conflicting

satisfy), the resulting method cleanText() we obtain after
the merge does not fully eliminate duplicated whitespace
from the text, which will certainly surprise Green. In fact,
the implicit specification “resulting text has no duplicated
whitespace” that is individually satisfied by revision L is not
satisfied by revision M that we illustrate in Fig. 1. So, we say
that L’s and R’s changes semantically conflict—or interfere in
an unintended way—with respect to the base revision B. Red’s
implementation is also correct, assuming he was not required to
eliminate whitespace between words, but ends up unexpectedly
interfering with Green’s implementation. Notably, we do not
observe interference in the opposite direction, as the resulting
merged code fully eliminates duplicated words—the implicit
specification implemented by Red holds in revisions R and M.

As current merge tools are not able to detect such semantic
conflicts, it is often difficult and expensive to detect and
resolve them. In fact, unless a project adopts careful code
review practices and has strong test suites, most semantic
conflicts are expected to escape to users. Even with such
careful and expensive practices for detection, semantic conflicts
are expected to escape. If detection is not immediate after
integration, it might be even harder to fix semantic conflicts, as
resolution involves reconciling behavioral semantic incompati-
bilities. In our example, we would have to investigate whether
the defect is in the individual implementations of Green and
Red, or in how one of them interferes with the other. This
would require a non-superficial investigation that breaks the
abstraction boundaries established by the declarations of the
methods called in cleanText(). It would not be enough to
check the specification of removeDuplicatedWords(),
but we would have to recognize that its implementation does
not eliminate extra space after the deletion of a duplicated word.

To reduce this discussed difficulty and the costs associated
with semantic conflict detection and resolution, it is important
to investigate to what extent unit test generation tools could
help to reveal the kind of interference we illustrate here.
The core idea we propose and assess in this paper is to use
generated tests as partial specifications of the code revisions
to be integrated—tests then partially capture the effect of the
changes in the revisions.

For instance, suppose a regression test generation tool (such
as Randoop [32] or EvoSuite [30], [31] as we use in the
remainder) generates the test in Fig. 2 when given the revision
L as input. That test passes when executed against revision
L, which leads to a call to the normalizeWhitespace()

1 class TextTestSuite {
2
3 public void test1() throws Throwable {
4 Text t = new Text();
5 t.text = "the the dog";
6 t.cleanText();
7 assertTrue(t.noDuplicateWhiteSpace());
8 }
9 }

Fig. 2. A test case that reveals the interference in Fig. 1

method when executing cleanText() in Line 6 of the test.
With the input illustrated in test1, when reaching Line 6,
t.text stores the test input string in Line 5, except for
the extra space character right before dog. Consequently,
the assert successfully evaluates. The same test breaks when
executed against revision B, since this revision involves no call
to normalizeWhitespace(), and so the assert throws an
exception. For this reason, breaking in B and passing in L, we
say that test1 partially reveals the intention of the change
that leads from the first to the second. We can see test1
as a partial specification of the changes in L.

Now note that test1 fails when executed against revision
M in Fig. 1. The normalizeWhitespace() ends up
being called when executing cleanText(), but the call to
removeDuplicatedWords() leads to a new duplicated
whitespace in the text, as explained before. This way, test1,
the partial specification of L, is not satisfied in the merged
version, revealing that the changes in R interfere with L (with
respect to B). If we could find a test that fails in B, passes in R,
and fails again in M, we would similarly say that L interferes
with R. This is essentially the criteria we apply for automatically
detecting interference by generating and executing tests in the
rest of the paper. Making sure that interference actually leads to
a semantic conflict cannot be automatically checked in general
because it involves understanding developers’ intentions or
proving that implementations satisfy specifications (in this
case, specifications of the changes, which are hardly available
in public repositories).

A. Background

Unit testing generation tools such as Randoop [34] and Evo-
Suite [35] generate tests that consist of a sequence of method
and constructor calls followed by assert statements. The
calls create, initialize, and exercise objects, playing the role
of test setup and test actions. The asserts verify the test’s
expected results. Randoop generates such a sequence of calls
by randomly selecting the methods and constructors in the class
under test. The arguments for such operations are also randomly
selected from a pool of values of primitive types, and of objects
previously created in the sequence. For optimizing the process,
it incrementally executes the sequences being created to make
sure that it is worth further extending them. EvoSuite starts
from randomly generated sequences as in Randoop, but relies
on genetic algorithms to evolve the sequences with the aim of
optimizing a specific goal, such as higher code coverage. With
respect to the generation of assertions, both tools adopt similar
approaches that explore the values returned by executing the



method sequences. EvoSuite can further calculate a reduced set
of the generated assertions, whereas Randoop can also generate
assertions that check basic and general contracts. A contract
expresses invariant properties that hold both at entry and exit
from a call; it checks whether the resulting call values conform
with its specification.

III. METHODOLOGY

To evaluate the potential of unit test generation to reveal
interference, our methodology comprises five main steps. First,
we extract and select merge scenarios from Java projects
hosted on GitHub, including a number of scenarios that
appear in previous integration conflict studies. Second, for
each selected scenario, we create builds for eight software
versions: base, left, right, merge, and four more derived from
these by applying testability transformations we conceived
(explained shortly in Sec. III-B1). Third, we apply three test
generation tools to create tests for four of these releases (left,
right, and their testability-transformed versions) and run our
scripts for executing the tests, discarding invalid tests, and
avoiding flakiness issues. Fourth, as a last automated step, we
run our scripts for checking the test-based interference criteria
and detecting interference. Fifth, we manually analyze each
merge scenario and the generated results, further investigating
why the generated tests are not able to detect interference in
some of the scenarios that suffer from interference.

A. Mining and Selecting Merge Scenarios

Our merge scenario sample consists of two parts. The first part
contains merge scenarios mined from a number of Java projects
hosted on GitHub. We opt for Java projects only because the
unit test generation tools are language-dependent, and some of
our scripts are tool-dependent; the tools we use in our study
primarily generate test cases for Java. Most related studies
also focus on Java projects. We also limit our study to GitHub
projects as it is one of the most popular sources of open-source
projects, and most related studies also use GitHub.

For this first part, we start with a list of projects from
a previous study [36], [37] that focuses on Maven projects,
which could help in the build creation process of our second
step. We then arbitrarily selected a subsample of projects,
available in our online Appendix, and used our merge mining
framework [38] to select merge scenarios that integrate changes
in the same method body, constructor or field initialization,
as we thought this would increase the chances of collecting
interference situations. We mined only recent project histories,
for reducing build creation effort in the next step.4

The second part of our merge scenario sample contains
Java merge scenarios from previous related studies [29],
[14], [33]. From the first, we selected eight scenarios that
integrate independent changes to the same declaration, six with
interference and two without. One of the last two scenarios
integrates independent changes to two declarations, so we
count them as two potential interference cases in one merge

4We adopted a limit date for merge scenarios not older than five years.

scenario. We tried to add five more scenarios with interference
(they have 11 in total) to our sample, but we were not able
to build them due to missing old dependencies or unavailable
required resources. From the second study, we selected 11 Java
merge scenarios: three with interference (all they had) and eight
without. We also tried to add more cases without interference
but due to missing old dependencies, we could not build them.
In a few scenarios we did not observe changes to the same
declaration, so we discarded them. Finally, from the last work,
we included 15 scenarios that suffer from interference, five that
do not. At this point, we had a sample of 43 merge scenarios.

B. Applying Code Transformations and Building the Projects

For each scenario selected in the previous step, we apply the
following code transformations to each version in a merge
scenario (base, left, right, merge). Thereafter, we build the
project of each scenario to run the test-generation tools.

1) Testability Transformations: The application of the
testability transformations was motivated by preliminary
experiments we performed by using the unit test generation
tools with toy examples and a small subsample of the scenarios
we consider here. As guidelines, we used four scenarios of
our sample. In these experiments, we analyzed the method
declarations independently changed by two developers, and
observed, in a few cases, that the interference was propagated
through a class field. However, the interference could not
be detected by the generated tests because they would not
have direct access to the involved private fields. The tests
also did not invoke additional methods that had access to such
attributes. So interference could be reached, infection could
actually occur, but propagation could be hardly observed. For
being able to more easily detect interference in such situations,
we applied source code transformations to increase testability,
with possible impact on correctness, as assessed in the last
step of our study. In this case, the transformations replace
non public access modifiers with public access ones, for the
class that contains the method or field declaration that was
independently changed by two developers. We apply this
transformation for class fields, methods, and constructors.

During our initial experiments, we also realized that the
unit test generation tools could not even reach the interference
locations because they were not able to create objects of the
class that should be exercised to reveal the interference, or of
classes that appeared as parameters of methods in the generated
test. Aiming to address this issue, we applied a transformation
to add an empty constructor to the class under analysis, in case a
non-empty constructor was not available. An empty constructor
is relevant when the tools are unable to create complex objects;
objects having internal and external dependencies. Furthermore,
for scenarios where the independently changed declarations oc-
cur inside inner classes, we extracted them to the outer level, as
the test generation tools were not able to exercise inner classes.

Such transformations could be transparently applied by a
semantic merge tool based on the ideas we describe here. We
expect no major negative implications for users of the tool.
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Fig. 3. Study setup. Starting with the selection of Java project merge scenarios, we generate our sample dataset, call the unit test generation tools, and execute
the generated test suites to detect semantic conflicts. Besides that, we also perform a manual analysis to verify false positives and negatives in our sample.

Applying the transformations is computationally not expensive
compared to the costs of generating and executing tests.

2) Building the Projects: Considering we need to execute
build files with all dependencies defined for a project, we
decide to create these builds on Travis. So our infrastructure
requests Travis to create each build for the eight software
versions. When Travis fails to create the builds for lack of
dependencies, support for older Java versions, or additional
analysis adopted by projects, like style checking, we try to
manually fix the problem on Travis updating the configuration
files; otherwise we locally create the builds. We also adopt
the manual build creation process for Ant projects, as our
infrastructure supports only Maven and Gradle projects. At
this point, if we fail to create one of the eight builds for a
scenario, we simply discard the scenario—in our experiment,
we discarded five scenarios. The process and infrastructure we
use to create the builds appear in our online Appendix [38].

At the end of this step, we were left with a sample composed
of 38 merge scenarios and 40 potential interference cases,
as two merge scenarios contain more than one independent
changes on same declaration.

C. Generating and Executing Tests

Each merge scenario resulting from the previous step has
proper builds that can be executed and exercised by tests. Such
builds are required by unit test generation tools that work by
generating tests and running them against the system to be
tested, discarding tests that fail or do not increase code coverage.
This is the case for the test generation tools we evaluate:
EvoSuite, Differential EvoSuite, and Randoop [30], [31], [32].
We also chose these tools for their robustness and popularity.

In this step, we readily apply the three unit test generation
tools to create tests for four of the versions (left, right, and their
transformed versions, as explained above) associated with each
merge scenario. This way, the tools try to generate tests that pass
in these versions, which well fits with our interference criteria:
test passes in one of the merge commit parents and breaks
in the base and merge versions. For each of the four versions,
our scripts simply call EvoSuite and Randoop with the version
as input. For Differential EvoSuite, which tries to generate
tests that reveal behavior differences between two versions, we
additionally give the base commit as input, which is used as
the regression version. So, the tool will try to generate a test
that passes in the parent commit and fails in the base commit.

For controlling the randomness of the test generation process,5

our scripts repeat this three times, obtaining 12 test suites
from each tool, three for each version in a merge scenario.So
for each merge scenario, 36 test suites are generated.

For each resulting test suite, our scripts execute the contained
test cases three times, each time against one of the different
versions: base, associated parent,6 and merge, resulting in nine
executions. Finally, for each merge scenario, the generated 36
test suites are executed nine times resulting in 324 executions.
These executions are repeated with the aim of detecting test
flakiness. However, we did not observe any such case in our
experiment. If a test case does not yield the same result (pass or
break) in the three repeated runs, we simply filter it out, as not
doing that could compromise the accuracy of our interference
detection criteria. For each of the 324 test suite executions, we
group the test results into three sets: tests with failed status,
tests with passed status, and tests that could not be executed
because they do not even compile with the version under test.
Such validity issues with tests might occur because the test
was generated for a given revision, say left, but is executed in
other revisions as well: base and merge. If the left revision, for
example, adds a method declaration that is called in the gener-
ated test, this test will not even compile with the base version.
Such invalid tests are also discarded as a last action in this step.

D. Detecting Interference

For each scenario, we group the 324 test suite executions from
the previous step into four sets of 81 executions. Each set
contains the executions associated with the base, parent (left
or right), and merge commits for the original and transformed
versions. Next, for each such set, our scripts compute the test
cases that present the same result when executed on the base
and merge commits, but different result on the parent commit
(left or right).

Finally, our scripts collect the results for further analysis,
and report interference if our criteria are satisfied. In this case,
for a set of executions, a test must fail on base and merge,
but pass on a parent commit. The same criteria are applied for
cases in which a test case passes on base and merge commits,
but fails on the parent commit.

5The tools can behave non-deterministically, even when called with fixed
seeds, as the tests that they generate and execute might suffer from flakiness.

6Remember, each generated suite is associated with a merge parent.



E. Analyzing the Scenarios and Establishing the Ground Truth

With the results reported by our scripts, we manually analyzed
each merge scenario to establish a ground truth of actual
interferences in order to contrast it with the obtained results.
In particular, we collected information on false positives (our
interference criteria hold but there is actually no interference in
the scenario) and false negatives (our interference criteria does
not hold but the scenario actually suffers from interference).
This also helps to understand the potential of unit test generation
and of our criteria to detect interference.

Two authors manually analyze each merge scenario to check
for interference. One of them performed an initial analysis,
presented to the second, jointly discussed the case, and reached
a verdict. To reduce the chances of human error and misjudge-
ment in this process, for each interference verdict, we manually
design a test that could reveal the problem, especially when the
tools are not able to find one. Similarly, each non-interference
verdict has an explanation of why we could not design such a
test case; for example, one of the changes is a structural refactor-
ing, not affecting the behavior of the other integrated changes.

For many of the cases (33), the ground truth is available
in previous work, but we nevertheless follow the process
above and compared verdicts. For all cases, we summarize the
integrated changes to help reach verdicts and using our dataset
for replications and further studies. For the merge scenarios
reported with interference, we analyze the associated test suites
to ensure that the tests explore the conflict that we found during
our manual analysis. This analysis is essential, since the testabil-
ity transformations could introduce false positives to our results,
as some semantically change the program behavior. For that,
we check whether the failed test case assertions are exploring
the side effects of the elements involved in each conflict.

Aiming to understand the limitations that unit test generation
tools face—in our context of exploiting the generated test
cases to detect interference—we analyze the test suites of the
identified false negatives. Based on the test descriptions we
wrote during our ground truth analysis, we try to change the
unsuccessful generated test cases and check if they could then
detect interference. As a result, we identify improvements that
could be applied to the tools, as well as to better understand
and help assess how close the tools are to generating a test
case that would reveal interference.

At the end of this step, we obtain a dataset composed
of merge scenarios associated with their build files, both
with and without testability transformations, generated test
suites, interference ground truth, and further information on
the performance of each test generation tool.

IV. RESULTS

We now present the results of our analysis of the 40 parallel
changes to the same method and field declarations in the
38 merge scenarios mined from GitHub Java projects (see
Sec. III-A), including how semantic conflicts were detected
through our criteria and automatically generated tests. We
also discuss how the test generation tools could be improved
to increase conflict detection accuracy. Our focus is first on
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Fig. 4. Results Overview: distribution of changes (on same source code
declaration), their classification, and whether conflict is detected or not. Note:
Refactor. abbreviates Refactoring, No Interfer. abbreviates No Interference.

the cases with conflicts. Later we discuss the cases with no
conflicts, concluding with suggestions for improvement.

A. Cases With Conflicts

Recall that, to verify the potential of regression testing for
detecting semantic conflicts, we select 40 changes with changes
on the same declarations in the source code from 38 merge
scenarios from GitHub Java projects, apply code transforma-
tions to increase their testability, call the test-generation tools
to generate test suites, and finally, execute, filter, and remove
invalid test cases from our analysis.

Figure 4 illustrates our results; the right-hand branch gathers
the changes with semantic conflicts, while the left branch
represents the changes without conflicts. In total, we could
automatically detect four conflicts (in three merge scenarios)
in the 40 changes (10%).

Analyzing the right branch in Fig. 4 shows that in fact 15
changes have semantic conflicts based on our manual analysis.
Note that, even when the scenarios stemmed from another
study, we double-checked it, since other works might have a
slightly different understanding of semantic conflicts.

Figure 5 shows a change extracted from a merge scenario
of the project Storm with a semantic conflict detected by
Differential EvoSuite.7 In this merge scenario, the L commit
removed the reference for maxRetries of the local variable
returned by the method toString() (Line 4 in Fig. 5), while
the R commit added a new reference for subscription

7Merge commit from project Storm: ad2be67

1 public String toString() {
2 return "pollTimeoutMs=" + pollMS +
3 ",offsetCommitPeriodMs=" + offsetMS +
4 - ",maxRetries=" + maxRetries +
5 ",maxUncommittedOffsets=" + maxSet +
6 ",firstPollStrategy=" + firstPool +
7 + ",subscription=" + subscription +
8 ",retryService=" + retryService;
9 }

Fig. 5. Semantic conflict caused by changes in the same variable.

https://github.com/apache/storm/commit/ad2be678831b3b060229fd936e3908110162b7ac


1 @Test
2 public void test1() throws Throwable {
3 KafkaSpoutConfig kafka0 = new KafkaSpoutConfig();
4 String string0 = kafka0.toString();
5 assertEquals(
6 "pollTimeoutMs=1,"+"offsetCommitPeriodMs=0,"+
7 "maxRetries=0,"+"maxUncommittedOffsets=1,"+
8 "firstPollStrategy=true,"+"subscription=2,"+
9 "retryService=false", string0);

10 }

Fig. 6. Test case generated by Differential EvoSuite detecting semantic conflict.

(Line 7 in Fig. 5). So, L and R individually change the program
behavior (string construction) based on their own needs. These
changes can be integrated without reporting merge or build
conflicts (Lines 5 and 6 separate the changes in Fig. 5). Unless
there is a test case available to verify this method’s behavior,
this semantic conflict would not be identified. In Fig. 6, we
show the test case generated by Differential EvoSuite using
the R commit. As highlighted in the test case (Lines 7 and
8 in Fig. 6), the expected object should contain references
for maxRetries and subscription. The test case passes
on the R commit as expected. For the B (base) commit, the
test fails as the received object does not have a reference for
subscription. In the same way, in the M (merge) commit,
the test case also fails as the received object does not contain
a reference for maxRetries.

The other three detected conflicts have some common aspects
with the example we discussed. First, the conflicts occur
because the parent commits change the same object. So, to
detect the conflict, the tools should focus on one specific object.
Second, the tools could directly access the object involved in
the conflict (side effects). Thus, the test cases should have at
least one assertion exploring this object’s contents.

Differential EvoSuite was the most efficient tool in our study,
detecting four conflicts, while EvoSuite and Randoop detects
two and one conflicts, respectively. Although EvoSuite did not
detect the four conflicts, this tool analyzed and generated tests
for all four cases; Randoop generated test suites for three of
them. Analyzing the generated test suites, we verified that the
test cases adequately create objects and call the elements that
hold the side effects leading to the conflict. Nonetheless, their
assertions were irrelevant to detect the conflict.

For these conflicts, applying code transformations was a good
starting point to the conflict detection, as these transformations
increase the testability of the source code under analysis. For
example, after applying testability transformations, the tools
could directly access the objects and, consequently, explore
these objects in their assertions. This led to the detection of
two additional conflicts not detected by the same tools applied
to the same sample without the transformations.

Moving to the remaining 11 cases that represent false
negatives, we focused on understanding the limitations behind
the missed detection. To this end, we analyzed the generated
test suites and verified if after applying a few changes to the
test cases, the conflicts could be detected. To guide us during
this adaptation process, we considered the test descriptions that
we previously created during our initial manual analysis (see
Sec. III). For seven out of 11 changes on the same declarations,

the changed test cases could detect the conflict. To illustrate it
better, we must have a look at the changes in this case. Both
parent commits change the same array that is returned by the
changed method; while the L commit adds a new entry to the
array, R removes an old one. In these circumstances, the original
test case assertions are expected to explore the contents of the
object returned by the method. However, only one assertion
checked it, verifying whether the object was null. Adding noth-
ing more than an assertion exploring the object size was enough
to detect the conflict. It shows that even for false negatives
of unit test generation tools, the generated test suites could
reach the location of the infection, but failed to explore the
propagated interference. As such, the tools were close to detect
interference in this case. In other cases, the tools were not even
close. The methods holding the conflict were called, but with
arguments that prevent the test from reaching the interference
location; for example, with null argument values that lead
to exceptions before reaching the location. As a consequence,
irrelevant assertions were generated, which could not detect the
interference even if it was propagated. However, in some cases,
slightly adapting the assertion would be enough to detect the
interference. Below in this section, we discuss improvements
for unit test generation tools that could improve efficiency.

B. Cases Without Conflicts

Focusing now on the left branch in Fig. 4, we discuss the
25 changes without conflicts. They are all true negatives; in
our experiment, using the tools to detect interference leads
to no false positives. Initially, we classified these scenarios
based on their support for generating and executing tests.
Two cases were classified as not supported, since the changes
to be merged occur in test classes. The unit test generation
tools could not generate test cases for them, as the associated
test framework and project environment were not provided
to run the analysis. Even if we could provide the requested
environment, based on our manual analysis and interference
criteria, we would still classify the changes without semantic
conflict. The changes involve a refactoring and semantic
changes, but are not interfering with each other.

Moving to the 23 changes (to the same declarations in source
code) that are supported by the unit test generation tools, we
expected no test case to detect a semantic conflict. So even if
the test suites exercised the parent commit changes, no conflict
should be reported in the local context. For 16 changes, the
parent commits individually change the program behavior, but
when integrated, they do not interfere with each other at least
in the local context. It might be possible that these changes
globally interfere. For example, two developers may, in the
same method declaration, add assignments to different fields
of the same object. So, locally, the changes do not interfere
with each other. But, if we consider the surrounding program
context, say a method computeRate() that calls the changed
method and uses the two fields as part of an if condition, we
could have interference and conflict. Unit tests that exercise the
context classes could still detect this interference by invoking



computeRate(), but not by focusing only on the class that
declares the changed declaration, as we do in our experiment.

Next, we observed four changes resulting from structural
refactorings. As we explained above, in such circumstances,
even if one parent commit changes the program behavior, we
expected no semantic conflict. Finally, for the remaining three
changes (to the same declarations in the source code), the
parent commit changes cause other kinds of conflicts during
the integration (textual or build conflicts). Our goal in this
study is to analyze the interference among contributions, so it is
essential to ensure the class files that hold the semantic conflicts
have only the changes performed by the parent commits. When
merge or build conflicts occur, human intervention would be
necessary to fix these conflicts, and then it would be more
difficult to isolate the parent commit changes and perform our
analysis. Even with this risk, the tools generated test suites but
no conflict was detected.

C. Improvements for Unit Test Generation

We observed the following limitations and weaknesses of
the generated unit-tests in our specific context. For instance,
we observed a limitation to create complex objects with
internal or external dependencies. As presented in Sec. III, we
tried to address some of these limitations applying testability
transformations in the code under analysis. However, this rather
increased code testability, not the quality of the generated test
suites. Based on this perspective, we manually analyzed some
generated test suites of false-negative cases to understand the
limitations of these suites better.

Recall that, during our manual analysis, we documented the
conflicts in our scenarios in detail. Based on these descriptions,
we tried to apply changes to the generated test suites of
false negatives and verify whether the test suites could detect
the conflicts with the minimum possible number of changes.
Interestingly, the improvements we propose here are not fully
exclusive to detect semantic conflicts, but can help to improve
unit test generation tools in general.

Relevant object creation is required to reach the interference
location. The unit test generation tools face some problems
regarding the creation of objects that should be used directly
or indirectly by the test cases. Many test cases finish their
executions due to failing attempts to access fields or calling a
method from a received parameter, which was not well-created.
As an example, consider the case of project Jsoup.8 The
attempt to access fields of the object textNode0 throws
a NullPointerException, since the object was not
well-created. Giving relevant objects for test cases like this
is necessary to the test case reaches at least the interference
location. Based on this, we extended this test case and the
conflict was detected. This topic is also related to cases that
methods holding the conflict are not adequately called. In
these cases, besides the creation of relevant objects, a sequence
of method calls must be done aiming to assign values to
objects, that are required to reach the interference location.

8This case refers to merge commit a44e18a in project Jsoup.

Relevant assertions must explore the propagated interference.
Considering the hard work required to reach the location
where the conflict occurs, we expected that the assertions
could better explore the propagated interference. For example,
as we mentioned above, one conflict of project CloudSlang,9

the parent commits change the same array. The test case
generated for this scenario correctly creates the object, calls the
method, where the conflict occurs, and saves the method return
object into a local variable. However, the generated assertion
checked whether the local variable was null instead of
exploring the object size. So, depending on the type of a method
return object, the unit test generation tools could explore defined
aspects that could detect the conflict. For example, for array
objects, assertions should explore their size and contents.

Relevant assertions rely on the way an interference is
propagated. Test case assertions often use the object returned
by a method, but not objects that are passed as parameters.
For example, again analyzing the changes performed of
previous mentioned merge scenario of project Jsoup, the method
outerHtmlHead requires three parameters as input, not
returning any object (void method). However, a semantic
conflict occurs and the first parameter holds the propagated
interference. The test case generated by EvoSuite focusses on
verifying whether an exception is thrown during its execution.
The assertions should not be restricted to explore objects
returned by a method, but also other objects that were used
by a method or any other way of communication.

On a final note, the weaknesses of the tools we observed may
be motivated by the diverse sample of real projects we adopt
here. Previous work assessing Randoop [39], for example,
focuses mostly on generating tests for APIs. For EvoSuite [40],
previous work considers other kinds of projects, but many of
them come from the same owner. In other work [41], the
evaluation did not focus on detecting behavior changes.

V. DISCUSSION

The occurrence of conflicts negatively impacts team productiv-
ity and software quality. Depending on the kind of conflicts,
like merge conflicts, there are novel techniques to support the
resolution of them or even avoid that developers spend time
fixing them. These new tools, even with new ways to handle
merge conflicts, do not support behavioral semantic conflict
detection or resolution. While no approach is available to detect
these conflicts, they will continue to occur and, at some point,
show up to the team or even the final user. The later these
conflicts are observed, the harder it will be to fix them.

First, our results, in this study sample, do not report any
false positives. So if a semantic merge tool based on regression
testing generation is available for a development team, we
expect developers would most of the time be warned about real
conflicts—the team productivity would not be affected for no
reason. In the worst scenario, the tool would never warn about
any conflict, which is the same scenario of no tool supporting
semantic conflict detection.

9This case refers to merge commit 20bac30 in project CloudSlang.

https://github.com/jhy/jsoup/commit/a44e18aa3c1fcd25a68a5965f9490d8f7d026509
https://github.com/CloudSlang/cloud-slang/commit/20bac30d9bd76569aa6a4fa1e8261c1a9b5e6f76


One may argue the testability transformations could introduce
false positives in our results—a concern we are aware of, but
analyzing the reported detected conflicts, we observe they are
true positives. The transformations contribute to increasing the
testability of the code under analysis without major drawbacks.

Another novelty about using regression testing is on how
the semantic conflict is detected. Other approaches, as static
analysis, could inform that a prominent conflict was caused by
the data flow involving two variables. Despite the chances this
merge scenario could represent a false positive, the developer
should stop her/his work and spend some time analyzing it
until a decision could be made. In case a conflict is detected,
it would also be necessary to define how the conflict could
externally be observed. Adopting regression testing may
decrease the effort to understand how a conflict occurs. The
test case limits the amount of source code that should be
analyzed and changed to fix the conflict. Second, the test cases
can be used to observe the external final state of a program
in all commits of the merge scenario, so the behavior changes
individually for each commit. Regression testing could also be
applied during the conflict fix process. The developer could
use these test cases to verify whether the semantic conflict
is observed while changes are applied to fix the conflict.

In practice, semantic merge tools based on regression testing,
as we propose here, can help developers detect semantic
conflicts. Due to the observed low number of false positives,
the benefits can be obtained by avoiding major costs on wasted
developer effort. However, due to the significant number of
observed false negatives, developers should not exclusively
rely on our proposal of semantic merge tool to detect semantic
conflicts. They should still try to catch such conflicts by
reviewing the code review and executing project tests.

VI. THREATS TO VALIDITY

Construct Validity. As explained above, we cannot assess
semantic conflict occurrence without having access to the
developers intentions or specification of the changes they
make. So our study focuses on interference occurrence. As
manually assessing global interference, and generating and
running tests for the whole system, would demand considerable
effort, our study is restricted to local interference occurrence.
So it is possible that our sample has merge scenarios that parent
commit changes do not interfere with each other locally, but
interfere globally. The opposite can also occur. So the number
of false negatives and false positives with respect to a global
notion of interference could be different than our results report.
Nonetheless, regression tests could detect global interference
if the interference is propagated, and if we generate tests for
other classes in addition to the one that integrates the parallel
changes made by two developers.

Aiming to increase the testability of the source code under
analysis for the unit test generation tools, we decided to
apply testability transformations before performing our analysis.
For example, we change access modifiers to public. This
transformation does not semantically change a program; it
only makes some elements reachable for the test cases. If a

semantic conflict can be observed accessing a class field, but
this field is private, the unit test generation tools would
face many problems trying to indirectly access this attribute
without the transformation. Some may argue that, without this
transformation, such conflict could never be observed. That
might be true if indirect access, for instance with accessor
methods, is not available. However, this is not a problem
here since our ground truth and analysis focuses on locally
observable interference, not globally observable interference.

Internal Validity. When creating the interference ground
truth, knowing the results of the test generation tools before the
manual analysis could have influenced the verdict. For instance,
knowing that the tools were not successful for a given scenario
brings the risk of precluding a more in-depth analysis from
our side. To reduce this threat, we involved two authors in the
analysis, and demanded they provide an explanation of why
there is no interference; this often requires understanding the
changes in detail to detect refactorings, changed state elements,
and how they impact each other. The risk is significantly
reduced for the cases in which the tools were successful, as the
threat can be minimized by analyzing the interference revealing
threat, running it, and manually checking whether the test case
assertions focus on the changed state elements.

As we discuss when presenting our results, we remove
from our analysis test cases that are not compilable on at least
one commit of the triple of commits in the merge scenario.

External Validity. Our results are specific to the context of
open-source GitHub Java projects. The code transformations,
as we discussed, positively impact our results and contribute
to increasing the source code testability; in some cases, also
detecting the conflict. Applying our proposal of semantic
merge tool to other programming languages would require test
generation tools for the desired language and also the code
transformations, if applicable.

VII. RELATED WORK

Regression testing has been used for detecting behavior
changes in the past. Evans and Savoia [42] combine regression
testing with progression testing to detect preserved, altered
and eliminated behavior of a program. They evaluate a parser
written in Java showing significantly better detection rates
than regression testing alone. Jin et al. [43] leverage change
analyzers to generate test cases for changed parts of a software
program. Shamshiri et al. [44] present EvosuiteR, a test
generation tool for differential testing that uses search-based
algorithms to find regression faults on different versions of a
program. While the previous studies evaluate the detection of
regression faults between two different versions of a program
using regression tests, in this work, we evaluate the potential of
regression tests to detect semantic conflicts on merge scenarios
(three different versions of a program). We also consider in
our evaluation a sample of diverse real Java projects, while
the previous studies only consider small or toy projects.

Researchers have also investigated ways in which conflicts
can be detected and prevented early, thereby minimizing their
impact on productivity. Sarma et al. [17] present Palantir,



a workspace awareness tool, which aims to minimize the
occurrence of conflicts by notifying the developers of parallel
changes in the same artifact. Brun et al. [8] propose incorpo-
rating speculative analysis for early detection and prevention
of conflicts. To detect test conflicts, they analyze three Java
projects and rely on project tests, which are often not enough
for detecting interference as we explore here. They locally build
the merge commits, and if the build process fails because of
failed tests, they consider the merge scenario having a semantic
conflict. The failed tests are not executed on the parent and
base commits of the merge scenario, as we do here, which
may result in false positives, as the failed test may occur due
to the changes exclusively performed by one parent.

Cavalcanti et al. [12], [15], [14] conduct empirical studies
where they analyze merge scenarios and compare the accuracy
of different merge resolution techniques: unstructured, semi-
structured, and structured merge. They also propose a new, semi-
structured tool with significant advantages over unstructured
merge tools by reducing the false-positive and false-negative
rates of earlier semi-structured tools. When comparing with
structured merge, the authors verify semistructured merge
reports more false positives, but presents less false nega-
tives. Overall, they find that exploring more structure does
not necessarily improve merge accuracy. Contrasting with
our investigation here, their proposed tools are not able to
detect behavioral semantic conflicts, only syntactic and static
semantics conflicts.

Nguyen et al [45] present Semex, a tool for detecting which
combination of merged changes causes a test conflict based on
a technique called variability-aware execution [46]. First, the
tool separates the changes done by each parent commit in the
merge scenario and encodes each one using conditionals around
them (if statements) to integrate all these changes in a single
program. Semex then uses variability-aware execution to detect
semantic conflicts by running existing project tests, if available,
on this single program, exploring all possible combinations of
the encoded changes. The tool then knows which combinations
of commits lead to test failure and reports the set of commits
that, if integrated, would cause a test conflict. Reporting a
conflict exclusively based on the failure of a test in the merged
code does not always imply a conflict or interference. If the
test fails in one of the parent commits too, failure in the merge
might simply indicate inheritance of a defect. If the test passes
in both base and a parent commit, failing in merged code
might simply be caused by a non-interfering behavior change
from another parent commit. That is why we propose different
criteria, based on the idea of tests as partial specifications of
the changes to be integrated. We also rely on and assess the use
of test generation tools to detect conflicts, instead of relying
on existing project tests, which are often missing or have
limitations, as described above. Finally, Semex is preliminarily
evaluated using PHP toy projects, with manually created test
cases especially aimed at revealing conflicts, as the main focus
is on assessing the potential of variability-aware execution
for identifying conflicting branch combinations, not really the
potential for conflict detection, as we do here. Moreover, in

our study we use non trivial Java open-source projects.
Sousa et al. [29] propose SafeMerge, a tool that leverages

compositional verification to check semantic conflict freedom in
merge scenarios. In principle, this kind of static analysis should
lead to more false positives and fewer false negatives, when
compared to the use of tests as we propose here. An evaluation
with 52 merge scenarios indicates that SafeMerge reports 75%
of the scenarios without conflicts, with a false positive rate of
15%. However, analyzing the merge scenarios reported with
conflicts, we concluded that some of them do not represent
conflicts according to our criteria. In these cases, the changes in-
volved do not interfere with each other or are only refactorings,
leading to no behavior change and consequently no interference.

VIII. CONCLUSION

Branching and merging are common practices in collaborative
software development. Despite increasing the productivity of
development teams, they come with substantial costs when
developers integrate their changes and conflicts arise. Modern
merge tools alleviate many of the conflicts occurring in practice,
they are largely limited to syntactic conflicts, while semantic
conflicts are much harder to detect, with potentially much
more serious consequence on the software behavior at runtime.

We studied the detection of semantic conflicts using auto-
mated test-case generation techniques. As opposed to prior
attempts, this strategy requires not much setup effort and does
not need explicitly defined behavior specifications. We system-
atically investigate our interference criteria upon a manually
curated ground-truth dataset originating from real merge scenar-
ios mined from GitHub. We combine unit test generation tools
with testability transformation in the source code to be analyzed.

We show the feasibility of a semantic merge tool based on
regression test generation. While it was only able to detect
four conflicts out of 40 changes on same declarations, we
did not face any false positives according to our interference
criteria. This suggests that semantic merge tools based on re-
gression test generation would help developers detect semantic
conflicts early, otherwise reaching end-users as failures. The
transformations improved testability in two of the four detected
interference cases, suggesting that they might be useful for
interference detection. We discuss necessary improvements to
test generation and make our manually curated dataset available
in an online appendix [38], for replication and future technique
building upon our proposal of semantic merge tool.
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