
Noname manuscript No.
(will be inserted by the editor)

Understanding Semistructured Merge Conflict
Characteristics in Open-Source Java Projects

Paola Accioly · Paulo Borba · Guilherme
Cavalcanti

Received: date / Accepted: date

Abstract Empirical studies show that merge conflicts frequently occur, impairing
developers’ productivity, since merging conflicting contributions might be a de-
manding and tedious task. However, the structure of changes that lead to conflicts
has not been studied yet. Understanding the underlying structure of conflicts, and
the involved syntactic language elements might shed light on how to better avoid
merge conflicts. To this end, in this paper we derive a catalog of conflict patterns
expressed in terms of the structure of code changes that lead to merge conflicts. We
focus on conflicts reported by a semistructured merge tool that exploits knowledge
about the underlying syntax of the artifacts. This way, we avoid analyzing a large
number of spurious conflicts often reported by typical line based merge tools. To
assess the occurrence of such patterns in different systems, we conduct an empiri-
cal study reproducing 70,047 merges from 123 GitHub Java projects. Our results
show that most semistructured merge conflicts in our sample happen because de-
velopers independently edit the same or consecutive lines of the same method.
However, the probability of creating a merge conflict is approximately the same
when editing methods, class fields, and modifier lists. Furthermore, we noticed that
most part of conflicting merge scenarios, and merge conflicts, involve more than
two developers. Also, that copying and pasting pieces of code, or even entire files,
across different repositories is a common practice and cause of conflicts. Finally,
we discuss how our results reveal the need for new research studies and suggest
potential improvements to tools supporting collaborative software development.

Keywords Collaborative software development · Merge conflicts · Empirical
Software Engineering · Awareness tools

P. Accioly
Informatics Center, Federal University of Pernambuco, Brazil
E-mail: prga@cin.ufpe.br

P. Borba
Informatics Center, Federal University of Pernambuco, Brazil
E-mail: phmb@cin.ufpe.br

G. Cavalcanti
Informatics Center, Federal University of Pernambuco, Brazil
E-mail: gjcc@cin.ufpe.br

2 Paola Accioly et al.

1 Introduction

In a collaborative development environment, tasks are commonly assigned to de-
velopers working independent from each other. As a result, when trying to inte-
grate these contributions, one might have to deal with conflicting changes. Such
conflicts might be detected when merging contributions (merge conflicts), when
building the system (build conflicts), or when running tests (semantic conflicts).
Regarding such conflicts, previous studies (Brun et al., 2013; Kasi and Sarma,
2013; Zimmermann, 2007; Bird and Zimmermann, 2012) show that they occur fre-
quently, and impair developers’ productivity, as understanding and solving them
is a demanding and tedious task that might introduce defects.

However, despite the existing evidence in the literature, the structure of changes
that lead to conflicts has not been studied yet. Understanding the underlying struc-
ture of conflicts, and the involved syntactic language elements, might shed light on
how to better avoid them. For example, awareness tools that inform users about on-
going parallel changes such as Syde (Hattori and Lanza, 2010) and Palant́ır (Sarma
et al., 2012) can benefit from knowing the most common conflict patterns to be-
come more efficient.

With that aim, in this paper we focus on understanding the underlying struc-
ture of merge conflicts. At first one might think that merge conflicts do not have
a direct impact on software productivity and quality, as the state of the practice
merge tools identify merge conflicts, and developers solve them before resuming
implementation activities. However, previous studies (Sarma et al., 2012; Bird and
Zimmermann, 2012) suggest the contrary by reporting, based on experimental ob-
servations, that resolving merge conflicts is not so trivial. It might take considerable
time, and is an error-prone activity.

To better understand merge conflict characteristics, here we derive a catalog of
conflict patterns expressed in terms of the structure of code changes that lead to
conflicts. In particular, we focus on conflicts reported by FSTMerge (Apel et al.,
2011), a semistructured merge tool that is able to automatically resolve a large
number of spurious conflicts often reported by typical unstructured, line based
merge tools (Apel et al., 2011; Cavalcanti et al., 2015, 2017). For example, FST-
Merge automatically resolves conflicts due to changes involving commutative and
associative declarations, such as two methods inserted in the same text area— the
so-called ordering conflicts. Moreover, FSTMerge is able to detect conflicting sit-
uations that line-based tools cannot. Namely, when developers add methods with
the same signature— but with different behaviors— to the same file. Such situa-
tion likely leads to a build conflict. However, unless developers add both methods
to the same text area, line-based tools will not be able to detect such a conflict.
From now on in this paper, when we mention merge conflicts, we refer to the
conflicts that FSTMerge reports.

To derive our conflict pattern catalog, we analysed FSTMerge’s implementation
and systematically derived conflict patterns by abstracting all kinds of conflicts
that can be detected by this tool. Each pattern captures the language syntax ele-
ments involved in a conflict, besides the interaction between two revisions that
should be integrated, and their common base revision— the so-called merge sce-
nario. In particular, we are interested in the structure of individual changes per-
formed along two different development branches or repository clones, and how
they lead to a conflict. For example, the pattern “Different edits to the same class

Title Suppressed Due to Excessive Length 3

field declaration” captures the situation when two developers, working indepen-
dently, edit the same class field declaration.

To assess the occurrence of such conflict patterns in different systems, we con-
ducted an empirical study that reproduces 70,047 merges from 123 GitHub Java
projects. This sample has 10 times more projects, and more than 15 times merge
scenarios than related previous studies (Brun et al., 2013; Kasi and Sarma, 2013).
Like such studies, we limit our analysis to Git observable merges, since a number
of merges might have been removed by the use of Git commands such as rebase.

Our results show that 84.57% of semistructured merge conflicts in our sample
happen because developers independently edit the same or consecutive lines of
the same method. This result might seem obvious at first, as most code in Java
files appear inside methods. However this is only the case because we used a more
sophisticated merge tool that is able to solve ordering conflicts. Constrasting, if we
had used a line-based merge tool, such as GNU diff3 (Free Software Foundation,
2016), a significant part of the reported conflicts would likely be ordering conflicts,
which appear outside methods, or even crossing different methods boundaries, as
indicated by previous studies (Apel et al., 2011; Cavalcanti et al., 2015, 2017).
Moreover, even if one expects most conflicts inside methods, it would be hard
to guess the frequency proportions among different conflict patterns considering
edited language syntax elements.

By normalizing the number of conflicts considering the number of changes
made to the different language syntax elements, we found out that edits to method
lines, class fields, and modifier lists show similar probabilities of leading to merge
conflicts. With the obtained evidence, we might say that a reasonable strategy
to avoid merge conflicts is to monitor ongoing development activities, and alert
developers editing the same method lines, class field or modifier lists so that they
can communicate and solve potential conflicts early instead of having to resolve a
merge conflict hours or even days after implementing such changes.

Additionally, our results show that merge conflicts happened in 9.38% of the
analyzed merges from our sample, with a median of 6.64%, and an IQR (Interquar-
tile Range) of 8.81%. Moreover, we noticed that part of these semistructured merge
conflicts are spurious conflicts simply caused by changes to code indentation or
consecutive line edits. This motivated us to implement an improved version of FST-
merge that automatically resolves such conflicts. Using this adapted tool dropped
the total conflicting merge scenario rate to 8.39% (median of 6%, and IQR of
7.21%). This result reinforces the existing evidence (Apel et al., 2011; Cavalcanti
et al., 2015) that semistructured merge indeed reduces the number of reported
conflicts. And there is still room for improvements.

Our data also indicates that developers often do not take full advantage of
proper code version, but rather copy and paste code around different branches,
editing them, and then merging them back together, creating the risk of conflicts.
This problem evidences the need for tools that enable partial merges where de-
velopers, instead of merging entire sequences of commits, can break commits into
smaller parts/pieces of code and then choose what commits they want to merge.

Finally, our data indicates that merge scenarios often involve more than two
developers’ contributions, suggesting that merging branches is not likely to be a
simple task, since one needs to understand and merge contributions made by differ-
ent developers probably working on different assignments. This evidence reinforces

4 Paola Accioly et al.

the need for tools such as TIPMerge (Costa et al., 2016) which recommends expert
developers for integrating changes across branches.

In summary, in this work we make the following contributions:

– Derive a conflict pattern catalog with 9 patterns, and collect evidence on how
frequently each pattern occurs using different metrics;

– Implement an improved version of the FSTMerge tool that further eliminates
spurious conflicts, and provide evidence that such improvement effectively de-
crease the number of reported conflicts;

– Report new evidence on merge conflict frequency, by measuring how frequently
merges end up with conflicting changes, which allows us to compare our results
to previous studies. Moreover, we use a much larger sample, and adopt a more
advanced merge tool then previous studies did;

– Reveal the need for new research studies, and suggest potential improvements
to tools that support collaborative software development.

The material used to execute our study, including sample description, tools,
and results can be found in our online appendix (Accioly et al., 2017).

2 Understanding Merge Conflicts Characteristics

Considering the context described in the previous section, our goal in this pa-
per is to understand characteristics— such as structural patterns, causes, and
frequency— of merge conflicts reported when reproducing real merge scenarios
from the development history of different software projects. To achieve this goal,
we investigate the following research questions.

2.1 Research Question 1 (RQ1): What are the structural conflict patterns?

To answer RQ1 we need to derive a conflict pattern catalog, highlighting con-
flict structures in terms of the program elements independently changed in each
of the revisions that lead to the conflict. We derive such catalog by abstracting
the kinds of conflicts that can be detected by merge tools. Because we focus on
merge conflicts, in this paper we do not use tools and strategies such as Semantic
Diff (Jackson and Ladd, 1994), which compute semantic differences between two
versions of the same method. This leaves us with the following strategies for merge
tools: unstructured, semistructured, and structured (Apel et al., 2011).

As mentioned before, unstructured, line-based merge tools might report too
many ordering conflicts. Besides that, it would be hard to systematically derive a
catalog of conflict patterns based on edited language syntax elements, as unstruc-
tured tools analyse text lines, and have no knowledge about the underlying artifact
syntax. So, mainly to avoid biasing our sample with a large number of spurious
merge conflicts, we decided not to use unstructured tools to derive the conflict
patterns. In contrast, structured merge tools such as JDime (Apel et al., 2012)
operate on abstract syntax trees (ASTs), and incorporate full information on the
underlying language syntax. However, a drawback of this strategy is that it might
introduce defects in the merged version of the code. Consider, for example, when
one developer edits the initialization statement of a for declaration while the other

Title Suppressed Due to Excessive Length 5

developer edits the condition statement. In such context, merging these contribu-
tions might introduce build or semantic conflicts. Nonetheless, because they edit
different statements, the structured strategy would be able to successfully merge
them. In addition, there is a considerable performance overhead to use structured
tools because they have to build the full artifacts’ ASTs for every merge scenario
we wish to analyze.

Finally, FSTMerge tool inherits part of the strengths from both unstructured
and structured strategies by partially representing software artifacts as trees; tree
leaves represent as text code elements such as method bodies. It also provides
information (through an annotated grammar) about how nodes of certain types
(methods, classes, etc.), and their subtrees can be merged. This way, FSTMerge
is able to resolve a number of conflicts— the ordering conflicts— based on the
information that the order of certain elements (classes, methods, fields, and so
on) does not matter. The code elements represented as text are merged using a
conventional line-based merge tool. Moreover, as we mention in Section 1, besides
resolving ordering conflicts, FSTMerge is capable of detecting some types of con-
flicts that line-based merge cannot. For example, if two developers add to the same
class, but in different parts of the text, methods with the same signature, but with
different bodies, FSTMerge reports a conflict. Such strategy prevents subsequent
build problems while trying to build files with duplicate methods.

Moreover, the list of conflicts detected by FSTMerge is not exhaustive. This
tool has false positives and false negatives, as any other merge tool that we could
have chosen to derive the conflict catalog would have. In fact, in our threats to
validity section (Section 6) we present a list of FSTMerge false positives and false
negatives, and analyse the impact that they might have on our results.

In order to derive the conflict patterns, our starting point was FSTMerge’s
annotated Java grammar. The file describing the Java grammar contains annota-
tions on nodes declarations describing how FSTMerge should handle conflicts in
each type of node. For example, the method declaration node has an annotation
saying that conflicts involving this type of node should be handled by calling the
line-based merge approach.1

So, to derive the conflict pattern catalog, the first author of this study checked
all node annotations present in this file and derived the conflict patterns based
on the syntactic elements involved. Then, while discussing this catalog with the
other authors, we noticed that two nodes (the class extends declaration, and the
enumeration constant declaration) did not have annotations. So we changed FST-
Merge’s annotated grammar to add annotations to these nodes as well. Finally,
if our conflict analyzer tool could not match the conflict with any of the defined
patterns, it would classify the conflict in a pattern called “No Pattern”. However,
none of the conflicts from our sample were classified in this category.

Table 1 describes the resultant catalog containing 9 conflict patterns for Java
programs, expressed in terms of the performed kinds of changes to the involved
syntactic language structures:

We add the word “different” in our edit related conflict patterns to remind
that, if developers make equal edits— such as adding the same get method—
there is no conflict, since their contributions do not interfere with each other. In

1 https://goo.gl/9BXCmn

https://goo.gl/9BXCmn

6 Paola Accioly et al.

Table 1 Conflict patterns’ description

Abbreviation Description

EditSameMC
Different edits to the same or consecutive lines of the same
method or constructor, including lines with the list of
modifiers and exceptions

EditSameFd Different edits to the same class field declaration

SameSignatureMC
Methods or constructors added with the same signature
and different bodies

AddSameFd
Class fields declarations added with the same identifier
and different types or modifiers

ModifiersList
Different edits to the modifier list of the same type
declaration (class, interface,annotation or enum types)

ImplementsList Different edits to the same implements declaration
ExtendsList Different edits to the same extends declaration

EditSameEnumConst Different edits to the same Enum constant declaration

DefaultValueA
Different edits to the same annotation method default value
declaration

this case, a straightforward solution would be to simply merge the contributions
choosing the first developer’s version.

To better illustrate our conflict patterns, Figure 1 shows an example of the
EditSameMC pattern. We found this conflict while analyzing the OpenTripPlanner
project, an open source trip planner application.2 Note that, in this example, both
developers edited the declaration of the optionsBefore variable. Hence, the merge
tool reported this conflict so that it could be manually solved.

private List<WalkStep>
getWalkSteps(List<State> states) {

...

...
}

boolean optionsBefore =
pathService.multipleOptionsBefore(edge,
backState);
boolean optionsBefore =
currState.multipleOptionsBefore();

Fig. 1 Example of the EditSameMC pattern occurence.

Finally, although FSTMerge currently supports code written in Java, C#, and
Python, for simplicity, in this paper we only analyze Java projects. Considering
other languages would require different conflict pattern catalogs and associated
analysis. Some of our general patterns, such as EditSameMC and EditSameFd,
would also apply for C# and Python. But each language syntax particularities
could add or remove patterns from our catalog. For example, C# would have
a pattern for when developers edit a directive with the same alias. In contrast,
a catalog for Python would not consider the ModifiersList pattern, since Python
does not have explicit access modifiers. In the threats to validity section (Section 6)
we discuss how such a decision affect our study.

2 http://www.opentripplanner.org/

http://www.opentripplanner.org/

Title Suppressed Due to Excessive Length 7

2.2 Research Question 2 (RQ2): How frequently does each merge conflict pattern
occur?

After deriving the conflict pattern catalog, we are able to answer RQ2 by repro-
ducing real merge scenarios from the entire history of different Java projects, while
collecting the absolute number of conflict occurrences for each conflict pattern from
our catalog, using the following metric:

– Number of conflicts

By answering RQ2 we will learn how frequently the different conflict patterns
occur, and the frequency proportions among them.

2.3 Research Question 3 (RQ3): What kinds of code changes most likely lead to
conflicts?

While the number of conflicts shows conflict patterns that occur more frequently,
we complement this information by understanding the likelihood of ending up with
a merge conflict when editing different language syntax elements. To this end we
compute the following metric:

– Normalized number of conflicts = Number of conflicts
Number of changes

We compute the normalized number of conflicts by dividing the number of
conflict occurrences from each pattern by the number of involved syntax elements
changed during the entire project development history. For example, if, during the
development history of a particular project, we observe 50 EditSameMC conflicts,
and 500 edits to method or constructor elements, the normalized number of con-
flicts for the EditSameMC pattern would be 0.1, meaning that, when editing a
method or constructor, there is a 10% chance of introducing EditSameMC con-
flicts. In contrast, if, in this same project, we observe 5 EditSameFd conflicts, and
10 edits to class field elements, the normalized number of conflicts for EditSameFd
would be 0.5 or 50%. In such context, although EditSameMC conflicts are 10 times
more frequent than EditSameFd conflicts, the probability of having EditSameFd
conflicts when editing class fields is 5 times higher.

We compute both metrics because they complement each other. The number of
conflicts shows which conflict patterns occur more frequently, whereas the normal-
ized number of conflicts is useful to understand what kinds of code changes most
likely lead to merge conflicts. One of the goals in our study is to provide recom-
mendations for detecting conflicts more efficiently while working collaboratively.
Therefore, computing both metrics is useful to improve collaborative development
tools’ recall by helping them to detect the most frequent conflicts while being
careful about important conflict predictors.

Furthermore, because FSTMerge runs diff3 to merge methods and constructor
elements, we compute the normalized number of conflicts for the EditSameMC
pattern considering not only the number of changed methods and constructors,
but also the number of changed line chunks, and changed lines inside methods and
constructors. This way, we have different alternatives to analyze the results.

8 Paola Accioly et al.

2.4 Research Question 4 (RQ4): How frequently do merge conflicts occur?

By answering this question we would like to know how frequently developers have
to deal with conflicting changes when merging different code revisions. For this
purpose we use the following metric:

– Conflicting scenarios = Merge scenarios with conflicts
Merge scenarios

The conflicting scenarios metric measures the ratio of merge scenarios having
at least one merge conflict by the total number of analyzed merge scenarios. Thus,
it gives us the intuition of how often the merge process fails. This metric was also
used in previous studies (Kasi and Sarma, 2013; Brun et al., 2013). This way we
can compare our results to theirs.

2.5 Lessons Learned in the Pilot Study

With the purpose of testing our infrastructure, we ran a pilot version of this study
with a subsample of 40 projects from a larger sample that we selected according to
the requirements we describe in Section 3.3. A surprising result was that SameSig-
natureMC was the second most frequent pattern, representing approximately 13%
of the conflict occurrences. It seems unlikely that developers working independently
would so often add, to the same class, methods with the exact same signature and
different bodies. To better understand the situation, one of the authors manually
analyzed a few examples of SameSignatureMC conflicts, and, together with the
remaining authors, discussed their underlying causes.

During this analysis, we noticed that some of those duplicate methods were
simple methods such as getters and setters, which seems to be reasonable. However,
some of those duplications seemed odd as they were large methods (more than 100
lines, for example), and only small parts of them differed. For example, Figure 2
illustrates a conflict extracted from project Jitsi, an instant messenger application.
Note that the method called sendFile is complex— it has more than 100 lines—
and only the highlighted part differs. When we checked Jitsi development history
we noticed that in a certain commit one developer added the sendFile method.
Then, on a different branch, another developer copied this method and made a few
changes. Finally, when merging the changes, the conflict occurred. We saw other
examples like these. In fact, we even found examples where, instead of copying one
method, the developer copied the entire file from one repository to the other.

Fig. 2 SameSignatureMC example from Graylog2-server project.

Title Suppressed Due to Excessive Length 9

Alternatively, in other examples, the duplicated method existed previously
in the base revision and was equally renamed in two different repositories. For
example, on project Async-http-client, an asynchronous Http Client for Java pro-
grams, there was a method called onHttpError in the base revision. Then, on
subsequent commits from different branches this method was equally renamed to
onHttpHeaderError. By analysing the project development history we found out
that this method is overridden from the Grizzly project API.3 This method was
renamed in the new API version, and when the dependency was updated in the
Async-http-client project, the system build no longer worked, causing developers
to rename this method across different repositories.

After this analysis, we decided to further detail our coding and automati-
cally analyze SameSignatureMC occurrences matching them with their underlying
causes, as further explained in Section 3. Understanding such causes is useful to
derive new requirements for tools supporting collaborative development. For this
reason, we added an extra research question that we describe as follows.

2.6 Research Question 5 (RQ5): How frequent are the underlying causes of the
SameSignatureMC pattern?

We consider the following causes for SameSignatureMC occurrences and measure
their frequency:

– Copied files;
– Copied methods;
– Small methods (getters or setters);
– Renamed methods;
– Others.

We consider that copying and pasting across repositories does not necessar-
ily imply code cloning because, after the copy, the developer might merge the
branches. In this scenario, after resolving the merge conflicts, the code is no longer
duplicated (cloned) in the repository. If the branches were never meant to be
merged (branches for different products, for example) then we would have a code
clone across software systems, like the ones detected in Svajlenko et al (Svajlenko
et al., 2014).

3 Study setup

In this section we describe the setup of the designed study, including how we
implemented the tools and scripts to measure the metrics defined in the previous
section, and also how we selected the sample projects to conduct the study.

3.1 Conflict Analysis

The infrastructure that we built to run our study can be divided in two steps:
mining and merging, which we explain in detail in the folowing subsections.

3 https://grizzly.java.net/

https://grizzly.java.net/

10 Paola Accioly et al.

3.1.1 Mining Step

In the mining step we have a script that clones the project locally and runs the
command git log --merges which provides a list containing information about
all merge commits of that project— commits that were the result of a git merge
command. Subsequently we parse the result of this command to retrieve a list of
all merge commit ids and their parent ids. Each merge commit has two parents
that we call from now on as left and right revisions.

3.1.2 Merging Step

After retrieving the list of merge commits, we use the JGit API (Eclipse, 2015) to
checkout and copy the three revisions involved in the merge scenario— the common
base revision, and the left and right revisions derived from the base revision and
later merged into the merge commit. Then we perform three-way merges using
the git merge command— which uses diff3 as default merge tool, and therefore
can be applied to any text file— to merge non Java files, and an adapted version
of FSTMerge to merge Java files. This way we compute the conflicting scenario
rate considering all files in the revisions, and not only Java files so that we can
compute the Conflicting Scenario Rate considering all files.

Our adapted version of FTSMerge contains the following new features:

1. An observer that intercepts FSTMerge main mechanism and collects all re-
ported conflicts;

2. We changed FSTMerge’s annotated grammar to report the ExtendsList and
EditSameEnumConst patterns, which were missing in the original version;

3. We had to discard Java files that could not be parsed by the FSTMerge; it can-
not parse the constructs related to lambda expressions and type annotations.
However, these Java 8 new features are not the single cause for parser errors.
We observed that some parsed files had syntax issues as well. This corresponds
to 0.16% of the total number of Java files in our sample;

4. We changed FSTMerge’s default line-based merge tool from Revision Control
System’s (RCS)4 to Unix’s diff3 ; RCS is no longer maintained for mac os and
we wanted to run the same tool across different operating systems. This change
does not impact the results, as RCS uses diff3 in the background to merge files

We also implement a component called Conflict Analyzer which takes as input
FSTMerge’s reported conflicts to compute the metrics described in Section 2.
When our adapted version of FSTMerge calls diff3 to merge tree leaves, it first
executes the command diff3 –merge -E. The parameter E makes diff3 ignore the
distinction between tabs and spaces on input. Then, if the output contains conflict
markers, we call diff3 again, but this second time without parameter E. We do
that because the parameter E removes the base code version from the conflict
body, and we need the base version in order to run further analysis on conflicts,
as explained later.

4 http://www.gnu.org/software/rcs/

Title Suppressed Due to Excessive Length 11

3.1.3 Identifying Different Spacing, and Consecutive Line Edit Conflicts

Whenever our adapted version of FSTMerge reports a conflict, the Conflict An-
alyzer collects the conflict body to match the conflict with its respective pattern
from the catalog. If it cannot match the conflict with any of the defined patterns,
it classifies the conflict in the “No pattern” category. However, none of the con-
flicts from our sample were classified in this category. Subsequently, the Conflict
Analyzer evaluates the conflict body content (base, left, and right versions) to
identify two situations that likely represent spurious conflicts: different spacing,
and consecutive line edit conflicts. Figure 3 illustrates both cases. The left side
of the figure illustrates a different spacing conflict example. On both revisions,
the same line was edited, but only the right revision made significant changes to
the code: added a parameter to the method declaration. The left revision simply
altered code formatting. Our tool is able to identify this type of false positive by
comparing left and right revisions to the base revision, ignoring tabs, spaces and
line breaks. If at least one of the revisions (left or right) is equal to the base, we
classify this conflict as a different spacing conflict. We can then factor out this
kind of conflict in our results, focusing on the analysis of conflicts that are likely
more relevant.

void m() {
 int x;
 int y;
}

void m()
{
 int x;
 int y;
}

void m(int a) {
 int x;
 int y;
}

Base

Left Right

void m() {
 int x;
 int y;
}

void m() {
 int z;
 int x;
 int y;
}

void m(int a) {
 int x;
 int y;
}

Base

Left Right
Spacing Consecutive lines edition

Fig. 3 Types of conflicts that diff3 cannot merge.

On the right side of Figure 3, both revisions apply significant changes, but diff3
algorithm is not able to merge them because consecutive lines were edited (Khanna
et al., 2007). While we analyze spacing conflicts for all conflict patterns in our
catalog, we only look for the consecutive line edit conflicts on the EditSameMC
occurrences, because it is the only case when FSTMerge calls the diff3 algorithm.
We identify such conflicts using string comparison to check if only consecutive lines
were edited. While spacing conflicts always represent false positives, there is a risk
that consecutive line edit conflicts might lead to semantic conflicts. For example,
if the definition of a string variable takes more than one code line, and each devel-
oper edits one of the lines. So the analysis factoring out this kind of conflict should
be considered with care. For this reason we present separate results to consider
the incidence of conflicts with and without consecutive line edit conflicts. We iden-
tify such cases to compare the overall numbers with narrowed down numbers that
try to focus on the more interesting merge conflicts, that is, conflicts that have a

12 Paola Accioly et al.

greater chance of representing an interference between development contributions.
Besides that, both conflict types are simple to resolve automatically. A straight-
forward solution to resolve spacing conflicts is to replace the conflict body with
the significant changed version of the code. Moreover, allowing diff3 to merge code
when consecutive lines are edited could solve the second example from Figure 3.

3.1.4 ”Identifying the underlying causes of SameSignatureMC conflicts

After identifying spacing and consecutive line edit conflicts, there is one extra
step applied for the SameSignatureMC conflicts to understand and quantify its
underlying causes. To automate this analysis, we first check if the file containing
the conflicting method or constructor exists in the base revision. In case it does not,
we classify this occurrence in the “Copied file” category. Such situation happens
when one developer adds one file, and, after a while, another developer copies
(instead of pulling and merging) this file to his/her local workspace, and then
alters the method body. Conversely, if the file containing the method exists in the
base revision, we check the method size and its name. If the method name contains
the words get or set, or it is a small method— with no more than 3 lines of code—
we consider the conflict to be in the “Small method” category. This situation we
believe is more reasonable to expect: two developers working independently felt
the need to add getters, setters or other kind of simple methods to the same class.

If the conflict was not classified in the “Copied file” and the “Small method”
categories, there are still the two following categories: “Copied method” and “Re-
named method”, whose classification is more elaborated. Because the SameSig-
natureMC conflicts’ body has no base version, we first compare both methods
versions using the Levenshtein distance algorithm (Levenshtein, 1966) to check
for string similarity. We used the original algorithm version considering insertion,
deletion, and substitution of characters. The extended version considers also the
transposition of two adjacent characters. This extension would be useful to mea-
sure the distance between smaller strings such as words, when, for example, two
adjacent characters are displaced in a typo. In our work, we compare larger strings
(entire method declarations with more than 3 lines of code), so this feature would
be less useful. It would capture, for example, situations like when a local variable
has its name slightly changed, but we believe that our threshold— as discussed
next— is able to consider such cases.

We consider methods to be the same if the similarity value is greater than
or equal to 70%. To choose this value, we executed our analyses, considering 68
randomly selected projects from our original sample, using 3 different thresholds
(>=60%, >=70%, and >=80%). We found out that, for the Renamed Method
category, a total of 78.6% of the renamed methods in the sub sample fall in the
>=80% category, and an additional >=11% is considered if we use the >=70%
category. For the Copied Method category, 84.4% fall in the >=80% category, and
an additional 8% is considered using the >=70% category. Hence, we considered
70% to be an acceptable threshold value, since we get most part of the renamed
and copied methods (more than 80% similar), and we are still able to get some of
the renamed, and copied methods having similarities between 70% and 80%.

If the methods similarity values is less than 70% we classify them in the “Oth-
ers” category. Otherwise, if the methods strings are more than 70% similar, we
look for a similar method in that file from the base revision. If we find a similar

Title Suppressed Due to Excessive Length 13

method on the base revision— considering the same 70% threshold of similarity—
we classify this conflict in the “Renamed method” category. Finally, if we do not
find a similar method in the base revision, we classify the conflict in the “Copied
method” category.

3.2 Normalized number of conflicts analysis

To measure the normalized number of conflicts we need to compute the number
of conflicts for each conflict pattern, and divide this number by the sum of all
changes made to the involved language syntax elements during the entire project
history. Figure 4 illustrates how we compute both metrics. The top part of the
figure shows a graph representing the development history of a project hosted on
Git. In this graph, the vertices represent the commits, and each commit has an
edge pointing to its parent (or parents, in the case of merge commits such as E
and G).

As previously explained, we compute the number of conflicts from the merge
commits in the merging step. To compute the total changes for a given kind of
syntactic element in the project history, we run the git log command that provides
information about all commits in that project, and parse the output to retrieve
the list of all commits ids and their parents ids. Then we use our adapted version
of FSTMerge to compute the kinds and numbers of nodes changed between each
commit and its parents. Note that in the CHANGES formula we sum changes only
from regular commits, and exclude changes from merge commits. Otherwise we
would be summing up most of the changes twice, because changes made on regular
commits are replicated on merge commits. Moreover, since FSTMerge calls diff3
to merge changes inside methods and constructors, besides computing the number
of changed method and constructor nodes, we also compute the number of line
chunks, and number of lines changed inside methods and constructors, so that we
can have different metrics to compare.

A	

B	

C	

D

G

E	

CHANGES= CHANGESBA + CHANGESCA + CHANGESDA

CONFLICTS = CONFLICTSE + CONFLICTSG

NORMALIZED_CONFLICTS = CONFLICTS / CHANGES

Fig. 4 Computing the number of conflicts, and the probability of ending up with conflicts
while editing different language syntax elements.

14 Paola Accioly et al.

3.3 Sample

To select our subjects sample, we used GitHub’s advanced search page,5 and con-
figured the search to filter Java projects with more than 500 stars ordered by
projects’ recent activity. By filtering GitHub search by the number of stars we
likely select more meaningful and popular projects, avoiding toy projects. From
this search results, we randomly selected 123 projects out of 1,963.

Although we have not systematically targeted representativeness or even di-
versity (Nagappan et al., 2013), by inspecting our sample we observe some degree
of diversity with respect to the following dimensions: size, domain, and number
of collaborators. Our sample contains projects from different domains such as
databases, search engines, games, and frameworks. They also have varying sizes.
For example, SimianArmy, a cloud computing tool suite from Netflix, has only 4
KLOCs, while Osmand, a navigation application, has approximately 640 KLOCs.
Moreover, Exhibitor has 20 collaborators, while Cassandra has 112 collaborators.
Besides that, we also selected projects that are widely used by software developers,
and that were analyzed in previous studies, including Junit, Jenkins, Cassandra,
Gradle, and Voldemort (Kasi and Sarma, 2013; Brun et al., 2013; Cavalcanti et al.,
2015). For further information on our sample, we provide a complete subject list
on our online appendix (Accioly et al., 2017).

4 Results

In our empirical study we analyze 70,047 merge scenarios considering the entire
version history of 123 projects hosted on GitHub. In this section, we present de-
scriptive statistics of the results structured according to the research questions.

4.1 RQ2: How frequently does each merge conflict pattern occur?

To answer RQ2, we collected a total of 28,883 conflicts reported by our adapted
version of FSTMerge, from the total of 4,141 merge scenarios with conflicts on Java
files. Figure 5 describes the conflict pattern distribution. We found out that Edit-
SameMC was, by far, the most frequent conflict pattern, representing 84.57% of the
collected conflicts. The second most frequent pattern was EditSameFd, followed by
SameSignatureMC, AddSameFd, ModifierList, ExtendsList, and ImplementList.
Moreover, we did not collect any conflicts from the DefaultValueA pattern, which
happens when two revisions edit the same default value of an annotation method
declaration.

The lower part of Figure 5 shows the bar chart after removing the potential
false positive conflicts, that is, conflicts due to different spacing, and consecutive
line edit. A percentage of 28.97% of the collected conflicts were classified in one of
these categories. More specifically, 48% of the false positives were due to different
spacing, 37.69% due to consecutive line edit, and the remaining 14.31% were due
to both reasons. EditSameMC was the pattern that had most occurrences of those
conflict types (32.21%). However, after removing spacing and consecutive line edit

5 https://github.com/search/advanced

https://github.com/search/advanced

Title Suppressed Due to Excessive Length 15

conflicts, EditSameMC is still the most frequent pattern, representing a total of
80.71% of the collected conflicts, without changing the big picture of our results.

0.00%

0.28%

3.53%

84.57%

5.21%

0.47%

5.46%

0.35%

0.12%

DefaultValueA

EditSameEnumConst

ImplementsList

ExtendsList

AddSameFd

ModifierList

SameSignatureMC

EditSameFd

EditSameMC

0 10000 20000
Number of occurrences

FSTMerge

0.00%

0.25%

4.89%

80.71%

6.21%

0.55%

6.76%

0.46%

0.17%

DefaultValueA

EditSameEnumConst

ImplementsList

ExtendsList

AddSameFd

ModifierList

SameSignatureMC

EditSameFd

EditSameMC

0 10000 20000
Number of occurrences

FSTMerge without potential false positives

Fig. 5 Bar charts showing the conflicts pattern distribution with and without potential false
positive conflicts.

Since those aggregated conflict percentages could be biased by outliers with
high occurrence of EditSameMC conflicts, we checked whether conflict pattern
occurrences follow a similar tendency across projects. The boxplots in Figure 6
show the conflict pattern percentage distributions considering all projects in our
sample after removing the spacing and consecutive line edit conflicts. By ana-
lyzing those boxplots, for most, but not all projects, we confirm the same ten-
dency of the aggregated sample of conflicts, since the pattern with higher per-
centages is indeed EditSameMC. As a matter of fact, we observe that, for more
than 75% of the projects from our sample, 69.03% of the collected conflicts were
from the EditSameMC pattern. Moreover, the EditSameMC boxplot is slightly
skewed to the right, whereas the ones for EditSameFD and SameSignatureMC

16 Paola Accioly et al.

boxplots are heavily skewed to the left. This happens because EditSameMC has
22 100%-observations, and only 13 0%-observations, while EditSameFd has no
100%-observation and 54 0%-observations. Finally, SameSignatureMC has 2 100%-
observations and 49 0%-observations.

●●●●●●

●●●●● ●●●●●●●●●● ●●●

● ●●●● ●●●● ●●●● ●●●●●●●●●

● ●●● ●●● ●●●● ●●●●●●●●● ●●●●●●●●

●●●●●● ●●●●●●●● ●●●● ●●● ●● ● ● ●

●● ● ●● ●●● ●● ●● ●

●● ●●●●●●● ●

●●●●● ●●● ●●●●●●●

EditSameEnumConst

ImplementsList

ExtendsList

AddSameFd

ModifierList

SameSignatureMC

EditSameFd

EditSameMC

0 20 40 60 80 100

Percentages(%) for each project

Fig. 6 Boxplots showing the dispersion of the conflict patterns percentages across projects.

4.2 RQ3: What kinds of code changes most likely lead to conflicts?

We answer RQ3 by computing the ratio between the number of conflicts and the
number of nodes changed during the project history (for EditSameMC conflicts
we also compute the number of line chunks, and lines changed inside methods),
Table 2 summarizes the aggregated results. While EditSameMC Nodes and Ed-
itSameMC Chunks are by far the ones more likely of leading to merge conflicts,
the others have probabilities lower than 0.1%. To further compare them we used

Title Suppressed Due to Excessive Length 17

the Wilcoxon signed rank test (Wilcoxon and Wilcox, 1964) combined with the
Bonferroni correction method for multiple comparisons (Bonferroni, 1936). The
results show a statistically significant difference when we compare EditSameMC
Chunks to EditSameFd, SameSignatureMC, and ModifiersList (p-values < 0.01).
However, there is no statistically significant difference when we compare Edit-
SameMC Lines (each line edit inside a method counts 2 changes) to EditSameFd,
SameSignatureMC, and ModifiersList.

Table 2 Probability of having merge conflicts while editing different language syntax elements.

Pattern Probability
EditSameMC Nodes 0.30%

EditSameMC Chunks 0.26%
EditSameMC Lines 0.03%
SameSignatureMC 0.03%

EditSameFd 0.06%
AddSameFd 0.01%

EditSameEnumConst 0.07%
ExtendsList 0.04%

ModifiersList 0.06%
ImplementsList Approximately 0.00%

Figure 7 top part depicts the boxplots containing normalized number of con-
flicts per project, computing EditSameMC normalization by the number of changed
lines. The lower part of Figure 7 shows the boxplots describing the absolute number
of conflicts per project. We can see that in the lower figure boxplots, EditSameMC
is by far the most frequent conflict pattern, followed by SameSignatureMC, and
EditSameFd. However, in the top graph of Figure 7 although there is not a sta-
tistically significant difference between the observations, EditSameFd has indeed
higher values than EditSameMC, and SameSignatureMC.

4.3 RQ4: How frequently do merge conflicts occur?

We answer RQ4 by reproducing 70,047 merge scenarios and computing the con-
flicting scenario rate, which measures the percentage of merge scenarios with at
least one merge conflict (See Section 2). We also compute this metric without
considering spacing and consecutive line edit conflicts. Table 3 describes the con-
flicting scenario rates for a few of the projects from our sample. The complete
table is online (Accioly et al., 2017).

Table 4 describes conflicting scenario rate values with and without different
spacing and consecutive line edit conflicts. Because our data is not normally dis-
tributed we used the Wilcoxon signed rank test (Wilcoxon and Wilcox, 1964)
combined with the Bonferroni correction method for multiple comparisons (Bon-
ferroni, 1936) to test some hypotheses. We also measure the effect size for each
test as defined by Rosenthal (Rosenthal, 1994), where an effect size of 0.1 means
a small effect, 0.3 a medium effect, and 0.5 a large effect. First, we compared the
conflicting scenario rate with and without spacing conflicts (p-value < 0.01, effect
size = 0.51). Then, we compared the conflicting scenario rate with and without
consecutive line edit conflicts (p-value < 0.01, effect size = 0.53). Considering the

18 Paola Accioly et al.

EditSameEnumConst

ExtendsList

ImplementsList

AddSameFd

ModifiersList

SameSignatureMC

EditSameFd

EditSameMC Lines

0.0000 0.0005 0.0010 0.0015

Normalized number of conflicts

EditSameEnumConst

ExtendsList

ImplementsList

AddSameFd

ModifiersList

SameSignatureMC

EditSameFd

EditSameMC

0 50 100 150 200 250

Number of conflicts

Fig. 7 The top of the image shows the normalized number of conflicts per project boxplots,
computing EditSameMC changes by the number of changed lines. Conversely, the lower part
of the image shows the absolute number of conflicts per project boxplots.

threshold of 0.01, we reject the null hypothesis on both tests, meaning that remov-
ing such conflicts represents a statistically significant decrease on the conflicting
scenario rate.

We further analyzed the conflicting scenario rate to check how many merge
conflicts occur over the total number of commits. From the 70,047 analyzed merge
scenarios, 4,141 (total of 5.91%, with a median of 4.43%, and an IQR of 5.54%)
contain conflicts in Java Files. In these scenarios, 28,883 conflicts were detected.

4.4 RQ5: How frequent are the underlying causes of the SameSignatureMC
pattern?

Moving on with the analysis, our aim with RQ5 is to understand why the SameSig-
natureMC pattern was the third most frequent pattern from our catalog. Figure 8

Title Suppressed Due to Excessive Length 19

Project Size (KLOC) Merges CR CR WFP
Antlr4 11.4 663 8.60% 7.99%
Javaee7-samples 65.5 207 0.97% 0.97%
AndEngine 40.7 115 6.96% 6.96%
Clojure 67 40 12.5% 10%
Elasticsearch 953 2,736 5.77% 5.26%
FBReaderJ 387 1,310 14.43% 13.28%
Graylog2-server 124 1,072 12.31% 12.13%
HoloEverywhere 48.6 82 8.54% 8.54%
OpenTripPlanner 15.9 734 12.67% 10.76%
cgeo 53 2,128 8.46% 7.71%
SimianArmy 4 218 9.17% 6.42%
Titan 251 488 16.19% 12.5%
Orientdb 319 1,752 9.13% 7.25%
Hector 27.6 404 12.62% 9.41%
Nutz 33.1 448 3.57% 2.46%
Hystrix 14.7 543 1.66% 1.47%
Hive 1,003 244 42.21% 39.34%
Netty 182 169 6.51% 6.51%
Dropwizard 17.7 825 2.18% 2.18%
Kotlin 412 588 9.01% 8.67%
ListViewAnimations 8.1 117 8.55% 5.98%
Jsoup 22.2 75 5.33% 4%
K-9 103 566 6.01% 4.95%
Droidparts 10.3 105 2.86% 2.86%
BroadleafCommerce 219 1,061 22.34% 20.74%
JeroMQ 23.4 161 0% 0%
ShowcaseView 2.1 96 9.38% 8.33%
Jmxtrans 17.2 275 2.55% 2.18%
StickyListHeaders 2.8 97 3.09% 3.09%
Retrofit 8.9 526 0.57% 0.38%
Storm 139 1,689 12.31% 11.78%
Eureka 32.7 391 6.65% 6.14%
Eclipse-themes 11.9 57 1.75% 1.75%
Spout 70.5 854 4.8% 3.98%
Druid 160.3 2,061 5.34% 4.85%
Scribe-Java 5.8 91 2.2% 2.2%
Conversations 39.2 514 5.25% 5.06%
Generator-jhipster 19.3 1781 4.72% 4.72%
Mct 131 198 7.58% 5.56%
Commons 67.5 208 1.92% 1.92%
Mongo-hadoop 15.2 92 15.22% 11.96%
Rstudio 494 1,840 5.82% 5.49%
HikariCP 8.5 189 12.7% 12.17%
Jitsi 381 94 9.57% 9.57%
Gradle 550 975 28.72% 28.51%
Bukkit 32.6 19 15.79% 15.79%
Cucumber-jvm 39.9 560 16.61% 14.82%
Cxf 868 130 3.85% 3.08%
Aws-sdk-java 1,044 146 4.11% 2.05%
Groovy-core 674 9.64% 9.2%

Table 3 Examples of projects from our sample. CR means conflicting scenario rate consid-
ering all files in the revisions, and WFP means without false positives, that is, spacing and
consecutive line edit conflicts.

shows the distribution of the underlying causes for this pattern. We notice that
more than half of the occurrences happened because files existing in both left and
right revisions, did not exist in the base revision. In such cases, the entire file was

20 Paola Accioly et al.

Table 4 Conflicting Scenario Rate Description. DS means different spacing conflicts, CL
means consecutive line edit conflicts, and IQR means interquartile range.

Total Median IQR

CR 9.38% 6.64% 8.81%
CR Without DS Conflicts 9.04% 6.50% 8.72%
CR Without CL Conflicts 8.64% 6.39% 7.76%

CR Without DS and CL Conflicts Conflicts 8.39% 6.00% 7.21%

copied from one repository or branch to another. Thus, for each method that was
edited by at least one of the subsequent commits, there was a conflict. The second
most frequent causes for method duplication were small methods, such as getters
and setters, followed by copied methods, and renamed methods. Finally, a total of
6.4% of the SameSignatureMC conflicts were not classified in any of the previous
categories.

23.80%

6.30%

10.90%

52.60%

6.40%

Renamed Methods

Others

Copied Methods

Small methods

Copied Files

0 25 50 75 100
Aggregated percentages (%)

C
au

se
s

Fig. 8 SameSignatureMC different causes frequency

Another interesting aspect that we have noticed during the manual analysis
conducted to understand the underlying causes of the SameSignatureMC pattern,
is that developers made conflicting commits between her own branches. In fact,
there are legitimate reasons for this workflow, as there are legitimate reasons for
conflicting changes between different developers branches. For this reason we de-

Title Suppressed Due to Excessive Length 21

cided to run a complementary analysis to learn to which extent do merge conflicts
occur involving a single developer, two developers, and more than two developers.

We consider that conflicting merge scenarios, and merge conflicts, involving
contributions from a single developer are likely less problematic to resolve than
the ones involving more than two developers. In addition, more than 50% of the
SameSignatureMC conflicts happened because entire files were copied from one
workspace to another, changed, and then merged back together. If a single devel-
oper was involved in such a operation, it is more likely that she copied files across
her own branches, which could be considered less problematic. But if two or more
developers were involved, no matter if the copies were made across branches or
repositories, this could be more problematic. Because of that we also check the
number of developers involved in merge scenarios with SameSignatureMC conflicts
caused by copy of files.

To accomplish such task, we collected, for each analyzed merge scenario, the
number of different developers who authored commits between the merge commit
and its base commit. We then classified the merge scenarios into three categories:
single developer scenario, two developers scenario, and more than two developers
scenario. With this data we answer the following questions:

1. How many developers are involved in merge scenarios, conflicting merge sce-
narios, and merge conflicts?

2. How many developers are involved in SameSignatureMC conflicts caused by
copied files?

Table 5 describes data percentages resulting from the analysis to answer ques-
tion 1. We describe the data using the total percentage, the observed median and
the interquartile range. Furthermore, we used the Wilcoxon signed rank test com-
bined with the Bonferroni correction method for multiples comparisons to test
hypotheses comparing the number of developers and considering merge scenarios,
conflicting merge scenarios, and merge conflicts. Table 6 describes the adjusted
p-values, and effect sizes for each test.

Table 5 Description of the percentages in our data considering the number of developers (one,
two, and more than two). IQR means interquartile range.

Merge Scenarios
Conflicting Merge

Scenarios
Merge Conflicts

Total Median IQR Total Median IQR Total Median IQR
One
Dev

6.53 5.19 8.92 6.39 1.23 9.21 2.56 0.00 4.22

Two
Devs

27.84 34.44 20.92 12.77 16.66 25.78 6.20 7.69 25.00

> Two
Devs

65.63 55.36 28.42 80.84 75.00 36.89 91.24 87.50 46.78

We also wanted to analyze the number of developers involved in merge scenar-
ios containing SameSignatureMC caused by copied files. We believe that if only
one developer was involved, more likely she copied files across her own branches,
which could be considered less problematic. But if two or more developers were
involved, even if the copies were made across branches or repositories, this could

22 Paola Accioly et al.

One Developer
vs

Two Developers

One Developer
vs

More than Two
Developers

Two developers
vs

More than Two
Developers

N of Developers
Involved in Merges

p-value<6.60e-16
eff. size=0.57

p-value<6.600e-16
eff. size=0.56

p-value=1.60e-06
eff size=0.32

N of Developers
Involved in

Conflicting Merges

p-value=2.44e-08
eff. size=0.36

p-value<6.60e-16
eff. size=0.56

p-value<6.60e-16
eff. size=0.57

N of Developers
Involved in

Merge Conflicts

p-value=8.38e-07
eff. size = 0.32

p-value<6.60e-16
eff. size=0.56

p-value=1.64e-14
eff. size=0.47

Table 6 Description of the adjusted p-values and their corresponding effect sizes according
to the comparison being made, and the research question

be more problematic. In our data, 121 merge scenarios from 56 different projects
had conflicts that happened because files were copied. From those merge scenarios,
20.66% involved a single developer, 14.87% involved two developers, and the re-
maining 64.47% involved more than two developers (the median was 4 developers,
and the IQR was 7 developers).

5 Discussion

In this section, we discuss the consequences of our results, and actions they sup-
port.

Most merge conflicts happen when developers edit the same lines of the same
method. However, perhaps awareness tools should be more careful with class field,
and modifier list edits as well.

RQ2 results point that most merge conflicts— 84.57% of the collected conflicts,
and 80.71% after removing spacing and consecutive line edit conflicts— happen
because developers edit the same or consecutive lines of the same method or con-
structor. At first this result might seem obvious due to the intuition that most
part of the Java code is inside methods. Thus the probability of conflicts occur-
ring inside methods or constructors would be higher. However, we achieved such
results because we used a more sophisticated merge tool. If we had used a line-
based merge tool like the previous studies that measure the conflicting scenario
rate (Brun et al., 2013; Kasi and Sarma, 2013), a significant part of the collected
conflicts would likely be ordering conflicts (Apel et al., 2011; Cavalcanti et al.,
2015), contradicting the initial reasoning. Also, FSTMerge captures the SameSig-
natureMC pattern that line-based merge tools do not, which increases the recall
of our numbers. So far, there has been no evidence about the frequency for this
type of conflict. Finally, we are not aware of previous studies providing empirical
evidence about the distribution among different conflict patterns considering the
granularity of edited language syntax elements.

Such results can be useful to help awareness tools becoming more efficient.
For example, although we have not implemented and validated awareness tools

Title Suppressed Due to Excessive Length 23

considering different conflict predictors, we hypothesize that a tool monitoring
developers working on different repositories, identifying when they edit the same
method, and alerting them, would likely have a reasonable recall since it would
detect most merge conflicts (approximately 85%).

However, our biggest concern about driving conclusions based only on RQ2
results is that there is no baseline about the proportion of changes made to the
repository and the number of conflicts. Most conflicts reported by FSTMerge in-
volve method declarations, but that could happen not because method changes
are more problematic but just because most changes occur in method declara-
tions. Perhaps, when comparing the frequency of conflicts against this baseline,
our results could change. For this reason we add RQ3 in this study. We believe
that RQ3 complements RQ2 results because while the unnormalised data is more
useful for driving awareness tools towards preventing a larger part of the conflicts,
normalising the data is useful to understand the precision of each kind of code
change as a conflict predictor.

In fact, after executing RQ3 analysis we found that not only editing the same
method, but editing the same class field and modifier list is an important predictor
to consider when trying to prevent conflicts. As a result, the hypothetical tool we
describe could also warn about the possibility of EditSameFd, and ModifiersList
conflicts with low risk of being wrong. This way, developers could communicate
early and avoid the occurrence of such conflicts.

In practice, RQ2 and RQ3 combined results might be helpful to improve exist-
ing awareness tools as well. For example, Palant́ır (Sarma et al., 2012), a workspace
awareness tool, informs different developers of ongoing activities in the same repos-
itory. It proactively detects merge conflicts by informing when developers edit the
same files using a metric based on the number of lines changed. As developers edit
more lines of the same file, the higher is the risk of ending up in merge conflicts.
However, such metric could potentially report false positives. For instance, when
developers implement independent methods in the same class. As an improvement,
one could add different types of alarms to alert developers in the presence of Edit-
SameMC, EditSameFd, and ModifiersList patterns. This way, Palant́ır is still able
to report most part of the conflicts, but it avoids false alarms.

Besides Palant́ır, Crystal (Brun et al., 2013) proactively integrates commits
from developer repositories with the purpose of warning them if their changes
conflict. To produce conflict information sooner, Crystal has to run its analysis
often. This can be expensive because it might involve complex build and testing
activities. To mitigate this problem, Crystal could use our conflict patterns as
predictors for conflicts. Then it could process code contributions before performing
the integration routine to check if they contain the most frequent patterns, and,
in case they do not, Crystal could delay the integration until the subsequent time
period. Although this suggestion likely reduces the cost of running Crystal, further
studies are needed to verify if it does not compromise Crystal’s accuracy regarding
build and test conflicts, which are beyond our scope here.

Finally, Syde (Hattori and Lanza, 2010) is a tool that provides team awareness
by capturing developers’ editions as atomic AST changes and warns developers if
they change the same nodes. Syde basically uses an approach that is very close
to the hypothetical tool we propose in this study to detect conflicts in real time.
However, as described by Syde authors, information overload could be a problem.
Perhaps in an industrial environment with very large teams and many simultane-

24 Paola Accioly et al.

ous changes Syde could overload developers with potential conflicts information
which could impair their productivity. One possible solution to mitigate infor-
mation overload in those contexts would be to capture changes concerning only
methods, class fields, and modifiers as our results indicate that such changes are
the most likely to lead to merge conflicts.

Sophisticated merge tools reduce conflicts and might improve productivity and qual-
ity

Compared to previous studies, our results show lower conflicting scenarios rate
values. Kasi and Sarma (Kasi and Sarma, 2013), and Brun et al. (Brun et al.,
2013), respectively show average conflicting scenarios rates of 14.38%, and 17%,
while the median of our conflicting scenarios rate was 6.64%. Moreover, by using
a slightly improved merge algorithm to remove spacing and consecutive line edit
conflicts, the median drops to 6%. Such difference is likely due to the adoption of
FSTMerge to merge Java files, naturally reducing the number of reported conflicts
compared to line-based merge tools. This result reinforces the evidence provided
by previous studies that investigates the benefits of adopting semistructured merge
tools (Apel et al., 2011; Cavalcanti et al., 2015).

Thus we believe the adoption of our adapted version of FSTMerge could help to
further increase not only development productivity, since developers could spend
less time dealing with spurious conflicts (Bird and Zimmermann, 2012), but also
product quality, given that a frequent cause of integration errors are merge conflicts
that are not resolved correctly.

Finally, our results show that 90.68% of the merge scenarios has less than 10
merge conflicts which could be considered less problematic from a quantitative
perspective. However, the conflict resolution effort depends on the nature of the
conflicts, as fewer conflicts do not necessarily mean less effort resolving them.
For example, our results show that most merge conflicts involve more than 2
developers’ contributions, which suggests that resolving merge conflicts might not
be simple. However, Menezes (Menezes, 2016) achieved similar numbers when he
analyzed the distribution of conflict chunks, using a traditional line-based merge
tool. He reports that most failed merges involved just 4 or fewer conflicting chunks,
and more than half involved 1 or 2 conflicting chunks.

Depending on the project development practices, we might have only been “scratch-
ing the surface” on the number of conflicts

We also analyzed some of our sample outliers— projects with a conflicting sce-
nario rate significantly higher or lower than the median— to understand factors
that might have influenced such disparity. During this analysis, we noticed that
14 projects, including Cassandra and Hive, had higher conflicting scenario rates,
comparable to those of the previous studies (higher than 16%). If we had not used
a more advanced merge tool, those rates might have been even higher. By man-
ually analyzing 4 of those projects— namely, Cassandra, Hive, Roboguice, and
BroadleafCommerce— we observe that these higher rates are accompanied by a
greater number of collaborators working independently at the same period of time,

Title Suppressed Due to Excessive Length 25

and pushing their commits directly to the main repository instead of performing
pull requests. Such practices resemble the development environment of centralized
version control systems such as SVN and CVS (Gousios et al., 2014). Particu-
larly, Cassandra has a patch-based contribution process, with no specific strategy
to avoid conflicts.6

Alternatively, projects such as JeroMQ and Dagger have no conflicts on Java
files. In fact, after removing spacing and consecutive line edit conflicts, a total of
10 projects from our sample turned out to have no conflicts on Java files. We sus-
pect, but have no hard evidence, that projects with no different spacing conflicts
might use tools that fix code indentation before commits. However, by analyz-
ing 4 of those projects— Generator-jhipster, Exhibitor, JeroMQ, and OkHttp—
we observed that this happened mainly for two reasons. First, projects such as
Generator-jhipster only merge contributions via pull requests and after rebasing—
a Git operation that effectively integrates code without creating a merge commit
or leaving any trace about a merge being performed. This practice is explicitly
mentioned in their contribution guide.7. Rebasing is a frequent practice in a de-
velopment model known as pull-based software development, commonly used in
version control systems such as Git. In this development model, instead of pushing
changes to a central repository, developers work locally and register pull-requests
to the master repository (Gousios et al., 2014). Then, the repository administrator
reviews the pull-request and merges it to the master repository.

The second reason for having a low conflicting scenario rate is that, for some
of the projects, in spite of their popularity and large number of registered contrib-
utors in the project’s Github page, only one or two contributors were significantly
active at the same period. This is the case of Exhibitor, which had 20 registered
contributors, but only one of them was responsible for 72% of the commits. In
contrast, OkHttp, which has a very low conflict rate (0.25%) had more than one
active contributor but they contributed on different periods of time, so their work
never really interfered with each other.

In summary, the development model used (pull-based together with rebase vs.
push to shared repository) may affect the number of merge commits in history.
The pull-based model, together with the systematic use of Git commands that
rewrites commits history, such as rebase,squash and cherry-pick, decreases the
number of merge commits. Nevertheless, conflicts are still being solved locally,
which means that our empirical results represent a lower bound for the actual
number of merge conflicts. Based on Zimmermanns analysis (Zimmermann, 2007)
of systems in CVS where 23% to 46% of file integration leads to merge conflicts,
we believe that running our study on a centralized version control system would
show an increased number of conflicts and conflicting merge scenarios.

Developers do not take full advantage of proper code version and end up creating
conflicts

In order to answer RQ5 we analyzed the occurrences of SameSignatureMC con-
flicts in our sample to understand their underlying causes. In fact we did not expect

6 http://wiki.apache.org/cassandra/HowToContribute
7 https://goo.gl/XQyygC

https://goo.gl/XQyygC

26 Paola Accioly et al.

that it would be so common for developers working on different assignments to
add methods with the same signature. Our automated analysis done with a total
of 1,505 conflicts of the SameSignatureMC pattern, shows that 63.5% of these
conflicts happened because developers copied methods, or entire files, from one
repository or branch to the other. We even observed curious cases where the same
developer, working on different repositories, copied methods across them. As ex-
plained before, this is not the case of code cloning, since the developer copied that
same piece of code from other branch to her branch on the same class that it was
before. We believe the idea is to reuse pieces of code from branches that were not
meant to be merged— different products’ branches, for example— or they were
not ready to be merged yet— the feature was not fully implemented and tested.
Furthermore, the developer might have simply postponed the entire merge process
to avoid having to deal with conflicting changes at that moment.

Either way, our results show that copy and paste across different branches
or repositories is a common practice. This evidence suggests that developers do
not take full advantage of proper code version, but rather copy and paste code
around creating the risk of conflicts. Such finding supports the need for tools that
enable partial merges, where developers, instead of merging entire sequences of
commits, can break commits into smaller parts/pieces of code and then choose
what commits they want to merge. Breaking commits into smaller changes is not
a new idea. In fact, tools that “untangle” commits, often containing a bundle of
unrelated changes, into smaller commits containing few logical units of changes,
together with a more descriptive message, have been proposed (Barik et al., 2015;
Dias et al., 2015). For example, the goal of Commit Bubbles, and EpiceaUntangler
is to help developers to build systematic commit histories that adhere to version
control best practices. Moreover, Codebase Manipulation (Muslu et al., 2015), is a
tool that automatically records a fine-grained history and manages its granularity
by applying granularity transformations. In addition to such tools, we suggest a
partial merge tool where developers that already know which code parts (methods
or files) they need at that moment, are able to isolate them in a different commit,
and merge just those selected commits to their local repository/branch.

Conversely, besides copying pieces of code, an additional 6.3% of SameSigna-
tureMC occurrences happened when a method from the base revision was equally
renamed on both derived revisions. At first this seemed like an odd coincidence,
but through a manual analysis we found that this was often due to a renaming
in an API method, and, as a result, when the dependency is updated, it breaks
the build across different repositories. Consequently, developers have to fix both
the method’s name, and its calls, on their local branch to successfully compile
the code. For those renaming cases, or other refactoring related changes, a mech-
anism that allows “broadcasting” refactoring related changes across repositories
could help. Of course, changes would be applied to a repository only when the
developer accepts the patch. This way, developers would not need to reproduce
the same code changes in different repositories. This is then extra evidence for the
need of better supporting refactorings in APIs evolution (Dig and Johnson, 2005).
For example, Catch up! (Henkel and Diwan, 2005), a tool that uses descriptions
of refactorings to help application developers migrate their applications to a new
version of a component, could be extended to support the cases we have observed.

Alternatively, a total of 23.8% of the occurrences were simple methods such as
getters, setters, or methods with less than 3 lines of code. This situation we believe

Title Suppressed Due to Excessive Length 27

is more reasonable to expect. Two developers might independently feel the need
for adding a get or an equals method to the same class. However, through a manual
analysis we saw that some of them were copied or equally renamed methods as
well, but because they had few lines of code, we did not run the analysis of copied
and renamed methods on them.

Finally, the remaining 6.4% of the SameSignatureMC conflicts did not fit in any
of the previously defined categories. Through manual analysis, we observed that
in some cases the methods were copied or renamed as well. However, because they
were significantly changed, our string similarity algorithm returned a score smaller
than our threshold (70%). Nevertheless, most of the manually analyzed cases really
reflected the name of the pattern— developers indeed added complex methods
with the same signature and different behavior. Furthermore, we noticed that
those methods’ names often contained common words from developers’ vocabulary
such as initialize, execute, run, and load. In the example we described back in
Section 2.5 illustrates a duplicated method called “sendFile” which could be a
recurrent name for methods from an instant messenger application. For such cases,
we could improve awareness tools to alert when developers add methods with the
same signature, so that they can communicate and solve this conflict earlier.

Merge scenarios, conflicting merge scenarios, and merge conflicts usually involve
more than two developers

The bottom line of the analysis collecting the number of developers involved in
merge conflicts is that those conflicting scenarios involving a single developer that
we found while manually investigating underlying causes for SameSignatureMC
conflicts are not so common after all. In fact, our data indicates that merge sce-
narios, conflicting merge scenarios, and merge conflicts often involve more than
two developers. We also observe this tendency when analyzing merge scenarios
containing SameSignatureMC conflicts caused by copied files.

Although the number of developers involved in merge conflicts does not mea-
sure directly the effort to resolve them, we believe that solving conflicts involving a
single developer is probably easier than solving conflicts involving different devel-
opers. Moreover, Costa et al (Costa et al., 2016) reported that developers usually
have a hard time while branching merges because it might hold numerous contri-
butions from different developers and they need to understand changes in order
to integrate them. Based on this problem they propose a tool called TIPMerge,
which recommends expert developers for integrating changes across branches. Our
work reinforces their findings.

6 Threats to Validity

Our empirical analyses and evaluations naturally leave open a set of potential
threats to validity, which we explain in this section.

28 Paola Accioly et al.

6.1 Construct Validity

A possible threat to the construct validity of our study is our choice of metrics. We
tried to mitigate this threat by using a suite of metrics that gives us alternative
views. For example, to learn about the most frequent conflict pattern, besides
computing the number of conflicts, we also compute the normalized number of
conflicts to complement our results.

Moreover, to learn about the frequency of conflicting merges in RQ4, we mea-
sure the proportion between conflicting merge commits and merge commits. This
metric was used in well established studies in the area (Kasi and Sarma, 2013;
Brun et al., 2013). This way, we were also able to compare our results with theirs.

A different alternative to learn about conflicts’ frequency would be to measure
the ratio between conflicting merge commits and commits in general. However,
we believe that such metric is not appropriate. For example, consider that one
developer committed 8 times while performing task A, and a second developer
committed 1 time while performing task B. Then, someone merged task A and
task B contributions into a merge commit which resulted in a conflict. In this
case, the conflict frequency would be 10% (1 conflicting merge commit out of
10 commits). However, if the second developer had the habit of making smaller
and more frequent commits, the conflict frequency would decrease, but, in the
end, his contributions would have conflicted with the first developer contributions
regardless of the number of commits.

In summary, depending on developers habits, they might commit too often or
too rarely and this metric would vary according to that. Meanwhile, by analyzing
the proportion between conflicting merge commits and merge commits we have a
better notion of how often developers contributions conflict with each other.

6.2 Internal Validity

In this work we analyzed 123 Java projects from Git. Three projects from our
sample (JeroMQ, Dagger, and Closure-compiler) had no merge conflicts, which
could affect the results for our conflicting merge scenario metric. However, the
sum of their merge scenarios represents only 1.07% from our sample. By removing
these projects from the analysis, the total conflicting merge scenario rate drops
from 9.38% to 9.37%, without changing the values of the median (6.64%), and the
IQR (8.81%).

Differently from previous studies, which used line-based merge tools, we used
FSTMerge which is a semistructured merge tool with some knowledge about the
underlying syntax of the artifacts. Thus FSTMerge is able to automatically solve
ordering conflicts. In addition, by using FSTMerge we were able to systemati-
cally generate our conflict pattern catalog. Nevertheless, the decision of using our
adapted version of FSTMerge also brings drawbacks to our analysis. Although it
removes a large number of false positives (Apel et al., 2011), it might add small
numbers of false negatives and other kinds of false positives, as we discuss next.

The added false negatives might happen when two developers independently
add import declarations involving different packages and the same member name.
For instance, if developer A adds java.util.List, and developer B adds java.awt.List.
When using FSTMerge to integrate those contributions, it will treat this case as an

Title Suppressed Due to Excessive Length 29

ordering conflict. FSTMerge will order the import list declarations, likely leading
to a build conflict (type ambiguity error). Alternatively, if we used a line-based
tool and the described contributions were added in the same line (or in consec-
utive lines), the conflict would be reported and the developer responsible for the
integration could resolve it before it becomes a build problem. Moreover, a differ-
ent type of false negative might happen when one developer adds a method that
calls a second method that was edited by another developer, which could lead to a
semantic conflict. Likewise, if those developers edit the same or consecutive lines
of the same text area, the line-based merge tool would report this conflict, while
the FSTMerge would not. To measure if two types of false negatives would have
occurred frequently in our data, we further analyzed all merge scenarios of 50 Java
projects from our sample, and observed that, from all the merge scenarios, only
1.66% had changes matching those patterns, and are, therefore, false negatives.
Thus, such conflicts do not happen very often. Nevertheless, FSTMerge could be
slightly improved to detect such cases.

Regarding the possibly added false positives, FSTMerge fails to identify renam-
ing changes. If a program element such as a method is renamed in one revision,
the FSTMerge algorithm is not aware of this fact and cannot map the renamed
method to its previous version, and it considers that the method was removed. If
the method that was renamed in one revision, is edited by the other revision, FST-
Merge will report a conflict. Conversely, a line-based tool would report a conflict
only if the same or consecutive lines were edited. This means that a percentage of
the EditSameMC conflict occurrences that we collected might fall into this cate-
gory and, therefore, be false positives, possibly affecting some of our more detailed
findings, such as the normalized results. It is hard to guess whether a version of
FSTMerge that properly handles renaming would improve our findings. In fact,
avoiding renaming conflicts could lead to new kinds of false negatives. So fixing
FSTMerge to properly handle renaming would demand careful evaluation of the
renaming detection strategy. In this paper, we decided to compute a conservative
(overestimated) number of renamings to check if, even considering more renamings
than expected, our main results would remain the same.

We collected a total of 24,427 EditSameMC occurrences. From this total, 9,206
might be false positives due to the renaming issue. This is an overestimation be-
cause FSTMerge cannot discern a deletion of an element from a renaming. To have
evidence that the FSTMerge renaming issue did not affect our main conclusions,
we made a preliminary analysis using a subsample of 60 projects from our original
sample to check for references on the renamed or deleted method. We observed
that 30.21% of renamed methods occurrences seems to be false positives, but this
is also an overestimation. So, considering that 30.21% of those 9206 occurrences
are false positives, the percentage of EditSameMC conflict drops from 84.57% to
82.92%. Consequently, even with this overestimated amount of false positives, Ed-
itSameMC conflicts would still be the most frequent conflict pattern by far from
our sample, without compromising our general results.

Like previous work such as Kasi and Sarma, and Brun et al., we analyzed Git
projects, which support commands such as rebase, squash, and cherry-pick, that
rewrite project development history. Consequently, depending on the development
practices of each project, we may have lost merge scenarios where developers had
to deal with merge conflicts, but that do not appear on Git history as merge
commits (Bird et al., 2009). When those commands are used in a systematic way

30 Paola Accioly et al.

they might dramatically decrease the number of merge commits. Consequently, to
analyze all merge scenarios, we would need to have access to private repositories.
So, our results are actually a lower bound for the real conflicting scenarios rates.
In fact, our assumption is that if we use a centralized version control system such
as SVN, the number of conflicts and conflicting merge scenarios would increase.
However, studying SVN history is challenging in our context because there is no
systematic way to precisely select merge scenarios; SVN has no standard log entry
type for merges. Previous studies such as Apel et al (Apel et al., 2011) look for
commit messages that suggest a commit is the result of merging, but that might
be imprecise. So, unless one carefully filters the merge scenarios, the analysis could
be biased.

Besides that, we could have used different merge tools to extract our pattern
catalog. For example, JDime (Apel et al., 2012) is a merge tool that tunes the
merge process on-line by switching between unstructured and structured merge,
depending on the presence of conflicts. However, JDime has the same disadvantages
of FSTMerge (renaming and import declaration problems). Moreover we managed
to remove some of the false positives of FSTMerge that JDime can solve (spacing
and consecutive line conflicts). Furthermore, JDime inserts new false negatives
with respect to FSTMerge. For instance, if both revisions edit different parts the
same field declaration— the type definition, and the initialization— JDime will
solve this conflict, most likely leading to a build or test conflict. As a final point,
we would not be able to use JDime’s autotuning strategy because we would risk
missing the false negatives of the line based merge. For example, we would miss
the occurrences of SameSignatureMC conflicts when the duplicated methods are
added in different areas of the file.

Finally, regarding our consecutive line edit conflict analysis, for most of the
cases, the edited lines can be merged safely. Nevertheless, there are cases were this
merge might lead to a build or test conflict. For example, if a string variable is
initialized in two consecutive lines (by string concatenation), and those lines were
edited, the revisions would be editing the value of the same variable. If such lines as
merged, this could lead to a semantic conflict. Thus, further studies are needed to
analyze how frequent this situation happens. Perhaps, with structured merge tools,
we could assess if the edits made to consecutive lines inside methods belonged to
the same statement or variable initialization. In case they did not, we could perform
the merge successfully. Nevertheless we showed that, by removing just the spacing
conflicts there is a statistically significant difference in the conflicting scenarios
rate.

6.3 External Validity

Our sample contains only open source Java projects hosted on GitHub. We only
used Java projects for simplicity. Furthermore, by choosing only popular projects—
projects with more than 500 stars on GitHub, we might miss diversity in our sam-
ple. To analyze projects in different languages, we would have to derive different
catalogs as well. Thus, generalization to other languages and other version control
systems is limited, and further studies would be needed to confirm our findings,
as discussed in Section 8. However it is not hard to see that some of our main pat-
terns, like editing the same method or the same class field, could also be present

Title Suppressed Due to Excessive Length 31

in other object-oriented languages similar to Java. It would be harder to automat-
ically solve spacing conflicts for languages such as Python, given that indentation
affects semantics. Also, the implications for future research discussed in this paper,
such as the concept of the tool that monitors developers, the concept of partial
merges, and the refactoring broadcast mechanism could be useful for a number
of different languages using different types of version control systems. Further-
more, Kalliamvakou et al. (Kalliamvakou et al., 2015) showed in their survey that
GitHub, with its common development practices (pull-based development), is be-
ing increasingly adopted in commercial projects as well.

7 Related Work

In this section we describe some of the previous studies that we use as base evidence
for our study, and related work divided by their different topics.

Empirical Studies

A number of empirical studies provided evidence about collaborative development
issues. In previous sections we have mentioned some of them. Khasi and Sarma,
and Brun et al. (Kasi and Sarma, 2013; Brun et al., 2013) who reproduced merge
scenarios from different GitHub systems with the purpose of measuring the fre-
quency of merge scenarios that resulted in conflicts. In addition, they also studied
the frequency of other types of conflicts, such as build and semantic conflicts.
Moreover, Zimmermann did a similar analysis, but with a different metric, as the
author reproduced files integration from CVS projects (Zimmermann, 2007). He
found that files integration on CVS usually conflicts in a range of 23% to 47%.
Regarding software merging techniques, Mens (Mens, 2002) provided a compre-
hensive overview of the field, and suggested directions for future research. Among
them, he claimed for the need of a detailed but language independent taxonomy
of the kinds of changes, and corresponding conflicts, that can be made to soft-
ware. Finally, Perry et al (Perry et al., 2001) made an observational case study to
analyze the effect of parallel changes on a large-scale industrial software system.
They reported that, although 90% of the files could be merged without problems,
the degree of parallel changes is high— merge conflicts involved between 2 to up
to 16 parallel changes — we also found similar results, since most part of merge
conflicts (91.24%) involved more than two developers.

In our work we also assessed the frequency of merge conflict occurrences in
different projects, but, contrasting with previous studies, we use a much larger
sample, and a semistructured merge tool that avoids a large number of spurious
conflicts often reported by typical line-based tools that are still used in practice.
In addition we also derive a conflict pattern catalog and measure how frequently
those patterns occur, and the probability of having a merge conflict while edit-
ing different language syntax elements. Moreover, we bring evidence about other
problems that developers often face while working collaboratively. For example,
the conclusion that developers often need to copy pieces of code or rename methods
across different repositories.

32 Paola Accioly et al.

Concerning the cost of resolving conflicts, previous studies have tried to esti-
mate it. For example, Kasi and Sarma (Kasi and Sarma, 2013) estimates conflict
resolution effort as the time interval between when a conflict first occurred and
until when it was resolved. In other words, the number of days the conflict per-
sisted in the master repository. They report that resolving merge conflicts took
substantial effort, typically spanning multiple days. However, this metric assumes
that the computed time intervals reflect the efforts of developers working exclu-
sively to resolve the conflict. Which is not always the case. This means that this
metric is an over-approximation.

Moreover, a main challenge for estimating conflict resolution effort is that dif-
ferent conflicts might demand different resolution effort. In this sense, Cavalcanti et
al (Cavalcanti et al., 2017), while comparing different merge approaches (unstruc-
tured and semistructured), estimate the effort to resolve different types of conflicts
by evaluating the strategy used by developers while resolving them. They assume
that resolutions including only changes from the merged contributions (without
new code, nor combination of contributed code) demand less effort. While this
estimation is a fair approximation of the time needed to fix the code which is part
of the total integration effort it does not consider the time needed to understand
the changes, reason about the conflict and then decide how to fix it.

In contrast, other studies do not quantitatively measure the cost of resolv-
ing conflicts, but they report, based on experimental observations, that resolv-
ing merge conflicts is not so trivial. It might take considerable time, and is an
error-prone activity. For example Sarma et al (Sarma et al., 2012) report that
developers commonly rush to commit their tasks before others so they would not
have to deal with conflicts while pushing their changes to the shared repository.
They claim that developers behave like that because they indeed spend significant
time dealing with merge conflicts. In addition Bird and Zimmermann (Bird and
Zimmermann, 2012) report that a frequent cause for integration errors are merge
conflicts that were not resolved correctly.

Studies that estimate the cost of resolving conflicts are complementary to our
work, since we investigate merge conflicts frequency. Moreover, we found that
merge conflicts usually involve contributions from more than two developers. Thus,
although this analysis does not measure directly the effort to resolve them, we
believe that solving conflicts involving a single developer is probably easier than
solving conflicts involving different developers.

Another empirical study performed by Cataldo and Herbsleb (Cataldo and
Herbsleb, 2011) tried to understand aspects leading to conflicts. They presented
an empirical analysis of a large-scale project where they examined the impact that
software architecture characteristics, and organizational factors have on software
integration failures. They concluded that architecture related factors such as the
nature and the quantity of component dependencies, as well as organizational fac-
tors such as the geographic dispersion of development teams, can lead to higher
integration failure rates. Furthermore, Shihab et al. (Shihab et al., 2012) presented
an empirical study that evaluated and quantified the relationship between software
quality and various aspects of the branch structure used in software projects. They
reported that, indeed, the branching strategy does have an effect on software qual-
ity and that misalignment of branching structure and organizational structure is
associated with higher post-release failure rates. Finally, Estler et al. (Estler et al.,
2014), investigated the impact of awareness information in the context of globally

Title Suppressed Due to Excessive Length 33

distributed software development. Among their findings, they concluded that in-
sufficient awareness information affects more negatively developers’ performance
than actual merge conflicts.

Our work complements these works because we also examine factors that re-
late to integration failures on collaborative development environments. However,
we analyse different factors. While Cataldo and Herbsleb analyzed architecture
level and organizational factors that lead to integration failures, and Shihab et al.
analyzed branching strategies that have an impact on software quality, we analyze
which code changes often lead to merge conflicts. Conversely, like Estler et al., our
results reinforce the importance of using and improving awareness tools.

Tools for Conflict Detection and Resolution

Tools and strategies to support collaborative development environments use dif-
ferent strategies to both decrease integration effort, and improve correctness dur-
ing task integration. Throughout this paper we have mentioned two of them.
Palant́ır (Sarma et al., 2012), which informs developers of ongoing parallel changes,
and Crystal (Brun et al., 2013), which proactively integrates commits from devel-
oper repositories with the purpose of warning them if their changes conflict. Alter-
natively, when the performed tasks are ready for being merged, TIPMerge (Costa
et al., 2016) has an algorithm that recommends developers who are best suited to
perform merges considering different metrics such as developers’ past experience
in the project, their changes in the involved branches, and dependencies among
modified files. Finally, given that it is not always possible to detect conflicts before
code integration, tools like FSTMerge (Apel et al., 2011), and JDime (Apel et al.,
2012) offer solutions to reduce integration effort by automating the resolution of
some types of conflict. In contrast, other awareness tools, such as Syde (Hattori and
Lanza, 2010), build code artifact ASTs to make the analysis of changes more pre-
cise. WeCode continuously merges uncommitted and committed changes to detect
conflicts on behalf of developers before they check-in their changes (Guimarães and
Silva, 2012). Moreover, Bellevue, is an IDE extension to make committed changes
always visible, and code history accessible inside developers’ workspaces (Guzzi
et al., 2015). Finally, Cassandra (Kasi and Sarma, 2013) is a tool that analyzes
task constraints to recommend an optimum order of tasks execution.

Our work brings evidence that reinforces the need of using such tools, besides
providing new insights to their improvement, or even to come up with new strate-
gies. In addition, we also provide small improvements to FSTMerge algorithm,
together with empirical evidence that they indeed improve FSTMerge’s results.

8 Conclusions and Future Work

When working in a collaborative development environment, developers implement
different tasks in an independent way. Consequently, during the integration, one
might have to deal with conflicting changes. Previous studies indicated that con-
flicts occur frequently, and impair developers’ productivity. In this paper, to un-
derstand the structure of the changes that lead to conflicts, we derived a conflict

34 Paola Accioly et al.

catalog with 9 patterns expressed in terms of the performed kinds of changes con-
sidering involved syntactic language structures. To assess the occurrence of such
patterns in open-source systems, we conducted an empirical study reproducing
70,047 merge scenarios from 123 GitHub Java projects. Furthermore, we focused
on conflicts reported by a semistructured merge tool, avoiding a large number of
spurious conflicts often reported by typical line-based merge tools.

Our results show that 84.57% of merge conflicts happen because developers
edit the same lines, or consecutive lines of the same method. However, editing
methods, class fields, or modifier lists have similar probabilities of leading to merge
conflicts. This means that, if we improve awareness tools to alert developers in
those cases, we might avoid most merge conflicts. In addition, merge conflicts
occur in a total of 9.38% of the analyzed merge scenarios. Moreover, by slightly
improving the merge algorithm to better handle spacing and consecutive line edit
conflicts, we got statistically significant lower numbers. Compared to previous
studies, our results show that using more advanced merge tools reduces the number
of conflicting merge scenarios. We also found that developers often copy methods,
or even entire files across repositories, which is evidence of the need for tools that
enable partial merges. Finally, as a complementary result, our data indicates that
merge scenarios, conflicting merge scenarios, and merge conflicts usually involve
more than two developers. This result suggests that integrating different branches
is not often an easy task since one needs to understand and merge contributions
made by different developers.

This work was a first exploration into semistructured merge conflicts’ structure.
There are several possible directions for enhancements. For example, although we
analyzed a large number of merge commits, our results could benefit from repli-
cations analyzing other projects, including projects in centralized version control
system such as SVN or CVS. Likewise, it would be interesting to replicate our
study by deriving a new conflict pattern catalog for a different language, or even
for a different merge tool. Moreover, one could answer additional questions with
our data. For example, what are the conflict patterns inside method bodies? What
percentage of those conflicts involve method signatures or just statements inside
the method bodies? To answer this question, one would have to use a diff tool
such as GumTree (Falleri et al., 2014), which builds the full AST. This would
replicate Menezes (Menezes, 2016) work, which reports that most conflicts in-
volve method invocations, method declarations, variable declarations, commen-
taries, and if statements.

Moreover, in this study we analyzed merge conflicts’ frequency. Another im-
portant aspect to analyze is the cost associated to solving merge conflicts. We
noticed that all the previous studies that try to estimate conflict resolution effort
has either used experimental observations, proxies, or over-approximations (Kasi
and Sarma, 2013; Cavalcanti et al., 2015; Sarma et al., 2012; Bird and Zimmer-
mann, 2012). We believe that a solid way to estimate the effort to resolve different
types of conflicts would be to conduct controlled experiments where developers
have to resolve conflicts while time and other metrics are being measured.

Alternatively one could make a study to analyze our results on a per-project
basis, understanding, for example, why some projects have more false positives
than others, why some projects have more SameSignatureMC conflicts than others,
etc. Other interesting research questions were left outside of scope of this paper,

Title Suppressed Due to Excessive Length 35

mainly the ones involving other technical and organizational factors that might
influence the presence of conflicts.

Finally, an important process-related question is who is responsible for integrat-
ing the merges. Such a decision is likely to influence the merge conflict resolution
process. For some of the projects we analyzed, such as Generator-jhipster, the
integrator information is not easily available at the project description pages and
files. One could maybe try to infer that by making a historical analysis of merge
commit authors. This would likely require a rigorous manual analysis to derive
heuristics that could be used to answer this question. Another option would be to
interview developers.

Acknowledgements We would like to thank the FACEPE (grants APQ 0388-1.03/14 and
IBPG 0716-1.03/12), CNPq (grant 309741/2013-0), and CAPES funding agencies for partially
supporting this work. We also thank our Software Productivity Group colleagues, and the
anonymous reviewers who greatly contributed to improve this work.

References

Paola Accioly, Paulo Borba, and Guilherme Cavalcanti. Online appendix. http://
twiki.cin.ufpe.br/twiki/bin/view/SPG/ConflictPatterns, 2017. Accessed:
2017-11-01.

S. Apel, Olaf Lessenich, and Christian Lengauer. Structured merge with auto-
tuning: Balancing precision and performance. In Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineering, ASE
2012. ACM, 2012.

Sven Apel, Jörg Liebig, Benjamin Brandl, Christian Lengauer, and Christian
Kästner. Semistructured merge: Rethinking merge in revision control systems.
In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, ESEC/FSE ’11. ACM,
2011.

Titus Barik, Kevin Lubick, and Emerson Murphy-Hill. Commit Bubbles. In
Proceedings of the International Conference on Software Engineering, New Ideas
and Emerging Results Track, ICSE 2015. ACM, 2015.

Christian Bird and Thomas Zimmermann. Assessing the value of branches with
what-if analysis. In Proceedings of the ACM SIGSOFT 20th International Sym-
posium on the Foundations of Software Engineering, FSE ’12. ACM, 2012.

Christian Bird, Peter C. Rigby, Earl T. Barr, David J. Hamilton, Daniel M. Ger-
man, and Prem Devanbu. The promises and perils of mining git. In Proceedings
of the 2009 6th IEEE International Working Conference on Mining Software
Repositories, MSR ’09. IEEE Computer Society, 2009.

C. E. Bonferroni. Teoria statistica delle classi e calcolo delle probabilità. Pubbli-
cazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze,
1936.

Y. Brun, R. Holmes, M.D. Ernst, and D. Notkin. Early detection of collaboration
conflicts and risks. IEEE Transactions on Software Engineering, 2013.

Marcelo Cataldo and James D. Herbsleb. Factors leading to integration failures
in global feature-oriented development: An empirical analysis. In Proceedings

http://twiki.cin.ufpe.br/twiki/bin/view/SPG/ConflictPatterns
http://twiki.cin.ufpe.br/twiki/bin/view/SPG/ConflictPatterns

36 Paola Accioly et al.

of the 33rd International Conference on Software Engineering, ICSE ’11. ACM,
2011.

Guilherme Cavalcanti, Paola Accioly, and Paulo Borba. Assessing semistructured
merge in version control systems: A replicated experiment. In Proceedings of
the 9th International Symposium on Empirical Software Engineering and Mea-
surement, ESEM’15. ACM, 2015.

Guilherme Cavalcanti, Paulo Borba, and Paola Accioly. Evaluating and improving
semistructured merge. Proceedings of the ACM on Programming Languages,
2017.

Catarina Costa, Jair Figueiredo, Leonardo Murta, and Anita Sarma. Tipmerge:
Recommending experts for integrating changes across branches. In Proceed-
ings of the 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2016. ACM, 2016.

Martin Dias, Alberto Bacchelli, Georgios Gousios, Damien Cassou, and Stephane
Ducasse. Untangling fine-grained code changes. In Proceedings of the 22nd IEEE
International Conference on Software Analysis, Evolution, and Reengineering,
SANER 2015. IEEE Computer Society, 2015.

Danny Dig and Ralph Johnson. The role of refactorings in api evolution. In Pro-
ceedings of the 21st IEEE International Conference on Software Maintenance,
ICSM ’05. IEEE Computer Society, 2005.

Eclipse. Jgit user guide. http://wiki.eclipse.org/JGit/User_Guide, 2015. Ac-
cessed: 2017-06-16.

H Christian Estler, Martin Nordio, Carlo Furia, Bertrand Meyer, et al. Awareness
and merge conflicts in distributed software development. In Proceedings of the
IEEE 9th International Conference on Global Software Engineering, ICGSE’14.
IEEE Computer Society, 2014.

Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin
Monperrus. Fine-grained and accurate source code differencing. In ACM/IEEE
International Conference on Automated Software Engineering, ASE’14, 2014.

Free Software Foundation. Diff utils user’s manual. https://www.gnu.org/

software/diffutils/manual/diffutils.html, 2016. Accessed: 2017-06-16.
Georgios Gousios, Martin Pinzger, and Arie van Deursen. An exploratory study

of the pull-based software development model. In Proceedings of the 36th Inter-
national Conference on Software Engineering, ICSE 2014. ACM, 2014.

Mário Lúıs Guimarães and António Rito Silva. Improving early detection of soft-
ware merge conflicts. In Proceedings of the 34th International Conference on
Software Engineering, ICSE ’12. IEEE Press, 2012.

Anja Guzzi, Alberto Bacchelli, Yann Riche, and Arie van Deursen. Supporting
developers’ coordination in the ide. In Proceedings of the 18th ACM Conference
on Computer Supported Cooperative Work and Social Computing, CSCW ’15.
ACM, 2015.

Lile Hattori and Michele Lanza. Syde: A tool for collaborative software devel-
opment. In Proceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering - Volume 2, ICSE ’10. ACM, 2010.

Johannes Henkel and Amer Diwan. Catchup!: Capturing and replaying refactorings
to support api evolution. In Proceedings of the 27th International Conference
on Software Engineering, ICSE ’05. ACM, 2005.

Daniel Jackson and David A. Ladd. Semantic diff: A tool for summarizing
the effects of modifications. In Proceedings of the International Conference

http://wiki.eclipse.org/JGit/User_Guide
https://www.gnu.org/software/diffutils/manual/diffutils.html
https://www.gnu.org/software/diffutils/manual/diffutils.html

Title Suppressed Due to Excessive Length 37

on Software Maintenance, ICSM ’94, pages 243–252, Washington, DC, USA,
1994. IEEE Computer Society. ISBN 0-8186-6330-8. URL http://dl.acm.org/

citation.cfm?id=645543.655704.
Eirini Kalliamvakou, Daniela Damian, Kelly Blincoe, Leif Singer, and Daniel M.

German. Open source-style collaborative development practices in commercial
projects using github. In Proceedings of the 37th International Conference on
Software Engineering, ICSE ’15. ACM, 2015.

Bakhtiar Khan Kasi and Anita Sarma. Cassandra: Proactive conflict minimization
through optimized task scheduling. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE ’13. IEEE Press, 2013.

Sanjeev Khanna, Keshav Kunal, and Benjamin C. Pierce. A formal investigation
of diff3. In Proceedings of the 27th International Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS’07. Springer-
Verlag, 2007.

Vladimir I. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions
and Reversals. Technical report, Soviet Physics Doklady, 1966.

Gleiph Menezes. On the Nature of Software Merge Conflicts. PhD thesis, Federal
Fluminense University, 2016. Accessed: 2017-06-16.

Tom Mens. A state-of-the-art survey on software merging. IEEE Transactions on
Software Engineering, 2002.

Kivanç Muslu, Luke Swart, Yuriy Brun, and Michael D. Ernst. Development his-
tory granularity transformations (N). In 30th IEEE/ACM International Con-
ference on Automated Software Engineering, ASE ’15. IEEE Computer Society,
2015.

Meiyappan Nagappan, Thomas Zimmermann, and Christian Bird. Diversity in
software engineering research. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2013. ACM, 2013.

Dewayne E. Perry, Harvey P. Siy, and Lawrence G. Votta. Parallel changes in large-
scale software development: An observational case study. ACM Transactions on
Software Engineering and Methodology, 2001.

Robert Rosenthal. Parametric measures of effect size. Russell Sage Foundation.,
1994.

A. Sarma, D. F. Redmiles, and A. van der Hoek. Palant́ır: Early detection of
development conflicts arising from parallel code changes. IEEE Transactions on
Software Engineering, 2012.

Emad Shihab, Christian Bird, and Thomas Zimmermann. The effect of branching
strategies on software quality. In Proceedings of the ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement, ESEM ’12.
ACM, 2012.

Jeffrey Svajlenko, Judith F. Islam, Iman Keivanloo, Chanchal K. Roy, and Moham-
mad Mamun Mia. Towards a big data curated benchmark of inter-project code
clones. In Proceedings of the 2014 IEEE International Conference on Software
Maintenance and Evolution, ICSME ’14. IEEE Computer Society, 2014.

Frank Wilcoxon and Roberta A Wilcox. Some rapid approximate statistical pro-
cedures. Lederle Laboratories, 1964.

Thomas Zimmermann. Mining workspace updates in CVS. In Proceedings of
the Fourth International Workshop on Mining Software Repositories, MSR ’07.
IEEE Computer Society, 2007.

http://dl.acm.org/citation.cfm?id=645543.655704
http://dl.acm.org/citation.cfm?id=645543.655704

	Introduction
	Understanding Merge Conflicts Characteristics
	Study setup
	Results
	Discussion
	Threats to Validity
	Related Work
	Conclusions and Future Work

