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ABSTRACT

In collaborative development environments integration conflicts oc-

cur frequently. To alleviate this problem, different awareness tools

have been proposed to alert developers about potential conflicts

before they become too complex. However, there is not much empir-

ical evidence supporting the strategies used by these tools. Learning

about what types of changes most likely lead to conflicts might help

to derive more appropriate requirements for early conflict detection,

and suggest improvements to existing conflict detection tools. To

bring such evidence, in this paper we analyze the effectiveness of

two types of code changes as conflict predictors. Namely, editions

to the same method, and editions to directly dependent methods.

We conduct an empirical study analyzing part of the development

history of 45 Java projects from GitHub and Travis CI, including

5,647 merge scenarios, to compute the precision and recall for the

conflict predictors aforementioned. Our results indicate that the pre-

dictors combined have a precision of 57.99% and a recall of 82.67%.

Moreover, we conduct a manual analysis which provides insights

about strategies that could further increase the precision and the

recall.
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1 INTRODUCTION

In a collaborative development environment, tasks are commonly

assigned to developers that work separately using individual copies

of project files. As a result, while trying to integrate different
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contributions, one might have to deal with conflicting changes.

These conflicts might be detected during merging, building, and

testing, impairing development productivity, since understand-

ing and resolving conflicts often is a demanding and error-prone

task [6, 8, 20, 26, 32].

To alleviate that problem, different awareness tools have been

proposed to alert developers about potential conflicts before they

become too complex [8, 16, 18, 20, 26]. However, there is not much

empirical evidence supporting the strategies used by these tools.

Learning about what types of changes most likely lead to conflicts

might help to derive more appropriate requirements for early con-

flict detection, and suggest improvements to existing awareness

tools.

A previous work [2] reported that most merge conflicts happen

when developers edit the same lines, or consecutive lines of the

same method or constructor declaration.1 They also claim that

editing methods is one of the change types that most likely leads to

merge conflicts. Conversely, a different study [22] suggested that

editions to directly dependent methods are also a frequent cause for

conflicts. That is, when one developer edits a method that calls a

second method edited by another developer. Although this situation

does not lead to merge conflicts, it is reasonable to consider that it

might increase the chance of having other types of conflicts, such

as build an test conflicts.

Build conflicts happen when the system building process fails

after the merge. This happens, for example, when developers in-

dependently introduce the same local variable declaration inside

the same method body. In contrast, a test conflict happens when

merged contributions interact with each other causing the system

to have different observable outputs than the system tests expect.

One example of a test conflict would be when both developers

change the same method, and then, after the merge, one of the test

cases started to fail due to conflicting contributions.

It then sounds that a possible strategy to avoid conflicts would

be to alert developers when they edit the same method and when

they edit directly dependent methods. However, it is possible that

developers edit different textual areas of the same method, without

causing merge conflicts. Likewise, developers might edit unrelated

concerns from directly dependent methods, avoiding build and test

conflicts. If such situations happen frequently, the alerting strategy

we discuss might raise too many false alarms.

Thus, we need further studies to investigate if editions to the

same method— which we refer to as EditSameMC changes from

now on—, and editions to directly dependent methods— or Edit-

DepMC changes— are good conflict predictors. In particular, we are

interested in investigating these conflict predictors precision, that

is, how frequently the conflict predictor presence is associated with

1From now on, we use method declarations to refer both to method and constructor
declarations.
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a conflict. In addition, we also want to measure their recall, that is,

what percentage of conflicts we avoid by using such predictors.

For establishing build and test conflicts ground truth, we rely on

the status of building and testing processes executed by the Travis

CI [29] service. Whereas this provides quite precise guarantees

for build conflicts, the guarantees for test conflicts are as good as

the project test suites. So, even for projects with strong test suites,

unexpected interferences between merged contributions might be

missed by the existing tests

To this end, in this paper we conduct an empirical study that

analyzes 5,647 merge scenarios from 45 Java-maven-travis projects

from GitHub to collect instances of merge, build, and test conflicts

together with conflict predictors. Then, we compute how frequently

a predictor occurrence is associated with a conflict occurrence,

and the percentage of conflicts that can be captured by detecting

predictor instances.

Additionally, we conduct a manual analysis to understand what

other types of changes cause conflicts, and what changes were as-

sociated with predictor instances that did not cause conflicts. Based

on the collected evidence we derive more appropriate requirements

for detecting conflicts early, and suggest improvements to existing

conflict awareness tools.

Our results indicate that, considering both conflict predictors to-

gether, we achieve a precision of 57.99%. In particular, EditSameMC

individual precision is 56.71%, and EditDepMC precision is 8.85%.

Moreover, we achieve a recall of 82.67% if we consider both predic-

tors together, while EditSameMC individual recall is 80.85% , and

EditDepMC recall is 13.15%.

The manual analysis points out that part of the predictor occur-

rences in our sample not associated with conflicts are actual missed

contributions interferences. For example, in one EditSameMC pre-

dictor from project Web Magic2 while one developer changes an

if statement condition, the other developer removes code located

inside this same if statement. This is expected given the limitations

of how we establish test conflicts ground truth. Consequently, the

precision results we report represent lower bounds of actual contri-

butions interferences, whereas the recall results are upper bounds

because other missed interferences not caused by the predictors

might have occurred as well.

Such evidence is useful to guide different conflict awareness

strategies. For instance, a more conservative strategy would be

to alert developers about a large part of potential conflicts at the

cost of dealing with some false positives. In this case, warning

developers about all predictor occurrences is a reasonable strategy.

In contrast, a strategy that aims at precision, even at the cost of

loosing conflicts, would be alerting developers about EditSameMC

instances only when developers edit the same lines of the same

method. Finally, based on our false positives and false negatives

analysis, we discuss different strategies that could further increase

the predictors’ precision and recall.

2 ANALYZING CONFLICT PREDICTORS

The goal of this work is to analyze EditSameMC and EditDepMC

effectiveness as conflict predictors. Specifically, we want to measure

the conflict predictors’ precision and recall. Besides that, we want to

2https://github.com/code4craft/webmagic

understand what happens when one conflict predictor occurrence

is not associated with a merge, build or test conflict occurrences.

Finally, we analyze what other change patterns, besides the defined

predictors, could also be considered important conflict predictors.

To achieve such a goal, we analyze merge scenarios from the devel-

opment history of different software projects while answering the

following research questions:

2.1 Research Question 1 (RQ1): How precise are
EditSameMC and EditDepMC predictors?

To answer this question we measure the conflict predictors’ pre-

cision. When we reproduce project merge scenarios, we collect

occurrences of merge, build and test conflicts, together with oc-

currences of conflict predictors. This way, when a merge scenario

has a conflict predictor and a conflict occurrence, we classify it

as a true positive instance. In practice, if an awareness tool had

alerted developers about the occurrence of such predictor, it would

have indeed, detected a conflict. However, if a merge scenario has

predictors but no conflicts, we classify it as a false positive instance.

This means that the awareness tool might have raised a false alarm.

In contrast, if the merge scenario has conflicts but no predictors,

we classify it as a false negative instance because the awareness

tool would not have triggered an alarm, and the conflict would only

be detected during the integration process. Finally, if the merge

scenario has no predictors nor conflicts, we consider it to be a true

negative instance. Therefore, we can compute the precision consid-

ering both predictors together, and for each predictor individually,

using the following formula:

• Precision =
T rue posit ives

T rue posit ives+False posit ives

2.2 Research Question 2 (RQ2): What
percentage of conflicts can we avoid by
detecting EditSameMC and EditDepMC
predictors?

To answer this question we need to measure the conflict predictors’

recall. We compute this metric considering the predictors together,

and individually, using the following formula:

• Recall =
T rue posit ives

T rue posit ives+False neдatives

2.3 Research Question 3 (RQ3): How are
EditSameMC and EditDiffMC possible
without causing conflicts?

To answer this question, we conduct a manual analysis considering

a sub sample of the detected false positives. With this analysis,

we aim to understand how developers managed to edit the same

method or directly dependent methods without causing merge,

build or test conflicts. This way, we can improve the precision

of the awareness strategy. Conversely, we also want to check if

contributions interferences are being missed by projects test suites.

As mentioned before, this is expected given the limitations of how

we establish test conflicts ground truth.

While analyzing false positive instances we try to understand if

the contributions clearly do not interfere with each other or if there

is a possibility of interference. To this end, we rely on a broader
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notion of interference defined by Horwitz et al. [19] and used in our

previous work [11]. This definition states that “two contributions

(changes) to a base program interfere when the specifications they

are individually supposed to satisfy are not jointly satisfied by

the program that integrates them; this often happens when there

is, in the integrated program, data or control flow between the

contributions.We then say that two contributions to a base program

are conflicting when there is no valid program that integrates them

and has no unplanned interference”. The challenge associated with

such a more comprehensive comparison criteria is that it is not

computable in this context [5, 19].

Therefore, we manually analyze the contributions to check if

there is a possibility of interference, for example, if one contribu-

tion edits a variable assignment which is later used by a command

that the other contribution adds or edits. We consider that it would

be reasonable to advise developers in such cases. However, if the

contributions edit unrelated variables, or if one of them does not

change the program behaviour, we consider that they do not in-

terfere with each other and, therefore, could be merged together

without further problems.

2.4 Research Question 4 (RQ4): What other
change patterns are associated with
conflicts?

We answer this question by manually analyzing the false negative

instances. Our aim is to learn about other change patterns associated

with conflicts in our sample. This way, new conflict predictors could

arise, increasing the recall of our results.

3 EMPIRICAL STUDY SETUP

To explain how we answer our research questions, here we present

our study setup and describe the selection, mining and analysis of

our data. All the scripts and data used in this study are available in

our online appendix [1].

In this paper we focus our analysis on Java projects hosted on

GitHub. In addition, we select projects using Travis CI services and

Maven as build manager. We select projects using Travis CI because,

besides being the most used CI service [31], it provides all build

information associated with a commit.3 We need such information

to compute our metrics as we further detail. In addition, we focus

on projects using Maven because we use its log report information

for filtering conflicts without human effort.

Figure 1 illustrates the study design, which is divided in the

three following phases: in the first phase, we select Java projects

from GitHub using Travis CI and Maven and filter those projects

containing at least one build or test conflict. Section 3.1 describes

this phase in more detail. Then, in the second phase, we use the

Conflict Analyzer tool used in our previous work [2] to reproduce

merge scenarios from each selected project. We enhance this tool

to collect conflict predictor instances as well. In this phase we

compute the metrics used to answer RQ1 and RQ2. We explain

how we do so in Section 3.2. Finally, in the third phase, we perform

a manual analysis on a sub sample of reported false positives and

3https://docs.travis-ci.com/api

false negatives so that we can answer RQ3 and RQ4. Section 3.3

explains this analysis in further detail.

Figure 1: Study design.

3.1 Phase 1: Filtering Projects Containing
Build and Test Conflicts

We start selecting our sample on GitHub by filtering Java projects

containing at least 40 stars and 50 forks. We choose a minimum

number of stars and forks to avoid selecting toy or personal projects.

With the list of selected projects, for each project we check if the

repository contains both Travis CI and Maven configuration files—

.travis.yml and pom.xml. We also check the project current status on

Travis (active or not). This way we ensure we select only projects

using Maven as build manager, and having data available on Travis

CI.

For projects meeting those requirements, we execute a script

that clones each project locally and retrieves their merge commit

list. However, as most projects adopted Travis CI later in its life

cycle, we filter project merge commits dated after the first finished

build on Travis. Then, for each selected merge commit, we use

its build status on Travis CI, together with its Maven build log

report, and its parent commits build status, to identify build and

test conflicts. However, Travis CI builds only the latest commit

in the push command or pull request to run the analysis, so not

all commits in a project have an associated build status on Travis

CI. Because of that, we use a script that forces the commit build

creation when there is no build yet. Basically, we create a project

fork, activate it on Travis CI, and clone it locally. Then, every push

to the remote fork creates a new build on Travis CI. So, for each

merge commit, or merge commit parent, without an associated

build on Travis CI, we reset the fork repository head to this commit

and push it to the remote fork.

If the merge commit build status on Travis CI is passed it means

that there is no build error, and none of the tests fails. For these

merge commits, we consider that there are no build or test conflicts.

In contrast, if the merge commit build status is errored— when

the build is broken— or failed— the build is ok, but at least one
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of the tests failed—, we consider it to be a build or a test conflict

candidate, respectively. However, there are some conditions that

must be satisfied first.

It is possible that a build breaks or a test fails due to external

configuration problems such as trying to download a dependency

that is no longer available, or exceeding the time to execute tests.

To eliminate these cases, we analyze for each build its Maven log

report seeking for specific message errors [28]. Basically, there are

two external causes responsible for interrupting a build process.

First, when the build fails because Travis or another external ser-

vice required by a build process was temporarily unavailable. We

discard these scenarios because they do not reflect issues caused

by conflicting contributions. Second, when the build process fails

due to unsolvable or wrong project dependencies. We only discard

such scenarios when no changes were made to configuration files.

This restriction ensures an external problem is responsible for the

build failure.

After discarding those cases, we check themerge commit parents’

status to eliminate cases where the build was already broken or with

failing tests before the merge. If this is the case, we consider the

merge commit broken build or failed test was carried over from its

broken parents, instead of being caused by conflicting contributions.

Therefore, we consider that a merge commit with an errored build

status has a build conflict if its parents have a passed or failed build

status. Likewise, we consider that a merge commit with a failed

build status has a test conflict if its parents have a passed build status.

Finally, by the end of this phase, we filter projects containing at

least one build or test conflict to proceed to the second phase of the

study where we collect merge, and conflict predictors occurrences.

3.2 Phase 2: Collecting Merge Conflicts and
Predictors

In this phase we use the Conflict Analyzer tool together with the

FSTMerge tool [2] to reproduce all merge scenarios from the fil-

tered projects dated after Travic CI first finished build from the

projects selected in Phase 1 while collecting information about

merge conflicts. FSTMerge consists of a semistructured merge tool

that is able to automatically resolve a large number of spurious

conflicts often reported by typical unstructured, line-based merge

tools [4, 10, 11]. For example, FSTMerge automatically resolves

conflicts due to changes involving commutative and associative

declarations, such as two methods inserted in the same text area—

the so-called ordering conflicts. Whenever FSTMerge reports a con-

flict, the Conflict Analyzer tool gets notified and classifies it into

different conflict patterns. Moreover, we had to implement some

changes to this infrastructure in order to collect EditSameMC and

EditDepMC instances. We also analyze EditSameMC predictors to

check if they are different spacing false positives. This happens

when one of the contributions only made changes related to code

spacing, which is irrelevant for Java code syntax. This way we can

compute and compare our metrics in both ways, considering all

EditSameMC predictors, and filtering the different spacing ones.

3.2.1 Collecting EditSameMCpredictors. Collecting EditSameMC

instances is straightforward since we had to slightly alter the merge

algorithm to notify the Conflict Analyzer tool when both merge

commit parents add changes to the same method. Because FST-

Merge uses diff3 algorithm to merge the content inside methods,

if the output text contains conflict markers, we collect an Edit-

SameMC instance associated with a merge conflict. Otherwise, if

there are no conflict markers, we compare the parents version to

the base version and, if both parents differ from the base version,

we collect an EditSameMC instance without merge conflicts.

3.2.2 Collecting EditDepMC predictors. To detect EditDepMC

predictors, while reproducing the merge, we collect all method

instances with non-spacing changes made by at least one parent—

we discard changes related to different spacing. We also keep the

information about which parent was responsible for editing each

method. By the end of the merge process, we have a list of all

methods changed by one of the parents.

Then, for each method changed by parent 1, we check if any

other method changed by parent 2 has a method call to it. Similarly,

we do the same inverting parent 1 and parent 2 in the description

above. Figure 2 illustrates this approach. Suppose that, by the end

of the merge process, we have three methods in our list. Methods

m and n from class A, edited by parent 1, and method o from class

B, edited by parent 2. In this example, we need to check if m calls o,

if n calls o, if o calls m, and if o calls n. There is no need to check

if m calls n, or if n calls m since these methods were edited by the

same parent.

Figure 2: Looking for EditDepMC predictor instances.

To check if one method calls another one, for performance rea-

sons, we use a two step approach. For example, consider that we

need to check if method o calls method m. First, we perform a

simple textual search to see if the name of the method m is inside

method o body declaration. In case it does, we use Eclipse JDT

library4 to parse class B and build its AST. Then, we visit B AST

nodes until we get to method o declaration. There, we list all the

method invocations, and check if any of themmatches with method

m from class A.

In Figure 2 example, after performing all necessary method ref-

erence checks, we note that there is one EditDepMC predictor

instance involving methods o and m. As we do for EditSameMC

instances not associated with merge conflicts, we check if the Ed-

itDepMC instances are associated with a build or a test conflict

collected in Phase 1.

4https://www.eclipse.org/jdt/
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3.3 Phase 3: false positives and false negatives
analysis

After computing the conflict predictors precision and recall, we

conduct an analysis to understand the causes of the false positives,

and false negatives from our sample. We start by randomly selecting

a sub sample of the false positive instances to manually analyze

them. Because we reproduce the merge scenarios locally, we keep a

copy of the files containing EditSameMC and EditDepMC instances

that are not associated with conflicts.

During these files’ analysis, we check the changes made by each

developer trying to understand if there is a possibility of inter-

ference between their contributions. If one of the contributions

performs changes that does not change program semantics, such as

renaming a local variable, or removing an extra pair of parenthesis,

or if the developers edit variables that are not related, we consider

that there is no interference. Conversely, if both developers change

the program semantics, and they edit related variables, for exam-

ple, when one developer changes an if statement condition, while

the other edit commands inside that same if statement, then we

consider that there is an interference.

Furthermore, we have two different strategies to analyze the false

negatives from our sample. First, we use the Conflict Analyzer tool

to automatically collect the merge false negative conflicts causes.

Second, we manually analyze the Maven log reports associated with

the errored and failed builds in order to understand what caused

build and test false negative conflicts.

4 RESULTS

In the first phase of this study we analyze a total of 64,445 merge

scenarios from 422 Java projects from GitHub using Travis CI and

Maven. From this total, 646 merge scenarios have an errored build

status. From this total, 551 merge scenarios meet our build conflict

criteria —the merge commit build status is errored while the parents’

status are either passed or failed. However, after performing the

Travis log report analysis, we eliminate 467 of thosemerge scenarios

because their builds fail dues to external reasons not related to the

contributions being merged. In such cases, we cannot be sure that

there is a build conflict due to conflicting contributions. Therefore,

we only consider the remaining 84 merge scenarios to have build

conflicts. Alternatively, we only found 5 merge scenarios meeting

the test conflict criteria —merge commit build fails while parents’

builds passes. This time, the log report analysis did not eliminate

any of the test conflict instances. In summary, by the end of this

study first phase, we select a total 45 projects containing at least

one build or test conflict.

While selecting that sample, we did not target representativeness

or diversity in a systematic fashion as Nagappan et al. [24] propose.

Nonetheless, we consider that our sample contains substantial and

active software systems with some degree of diversity with respect

to dimensions such as size, domain, and number of collaborators.

For example, Cloudify, a cloud infrastructure platform, has 408

KLOCs, and 23 active collaborators, Java Jwt, a library for creating

and verifying JSON Web Tokens on the JVM has only 8 KLOCs and

8 collaborators, and OkHttp, an HTTP client for Java and Android

applications has 57 KLOCs and 128 collaborators. For further infor-

mation on our sample, we provide a complete subject list on our

online appendix [1].

4.1 Conflict predictors’ precision and recall

In the second phase of this study, we take as input the list of 45

projects and use FSTMerge to reproduce a total of 5,647 merge

scenarios dated after each project first finished build on Travis CI.

In this sample, a total of 290 merge scenarios have merge conflicts,

and 508 have conflict predictors. If we remove different spacing

instances, the total number of merge scenarios containing merge

conflicts drops to 251, while the number of merge scenarios con-

taining predictors drops to 469.

Moving on with the analysis, we cross information about merge

scenarios containing predictors associated with merge, build, and

test conflicts. In total, there are 286 merge scenarios containing at

least one predictor occurrence associated with a conflict occurrence.

If we remove the different spacing predictors and conflicts, this

number drops to 272. Moreover, there are 282 merge scenarios

containing EditSameMC instances associated with conflicts. By

removing the different spacing occurrences, this number drops to

266. Finally, there are 45 merge scenarios containing EditDepMC

instances associated with conflicts. As explained in Section 3.2, we

do not collect EditDepMC different spacing instances. We use these

numbers to compute precision and recall considering the conflict

predictors combined, and individually. Moreover, we also measure

these metrics considering all predictors and conflicts instances, and

filtering the different spacing instances. Table 1 summarizes RQ1

and RQ2 answers.

5 FALSE POSITIVES MANUAL ANALYSIS

In the third phase of this study, we answer RQ3 by conducting

a manual analysis of the false positives from our sample. In to-

tal, our sample has 226 merge scenarios containing predictors not

associated with conflicts. If we remove the different spacing in-

stances, this number drops to 203. From this sample, we randomly

select 10 EditSameMC, and 10 EditDepMC instances to conduct the

manual analysis. Table 2 and Table 3 summarize EditSameMC and

EditDepMC false positives analysis, respectively. In summary, we

consider that 8 predictor instances have the possibility of interfer-

ence, while 12 do not. All the false positives and false negatives

manually analyzed are available in the online appendix [1].

6 FALSE NEGATIVES MANUAL ANALYSIS

To answer RQ4, we analyze false negatives conflict causes to learn

what types of changes— besides the defined predictors— are asso-

ciated with conflicts. In our sample there are 56 conflicting merge

scenarios where no conflict predictor was involved. From this total,

20 merge scenarios have merge conflicts (35.71%), 33 have build

conflicts (35.71%), and 3 have test conflicts (5.35%).

Because we use our previous work infrastructure to reproduce

merge scenarios, we automatically collect merge conflict causes us-

ing their conflict pattern catalog [2]. Among the 20 merge scenarios

containing merge conflicts, 11 scenarios (55%) had conflicts caused

by developers editing the same class field, 7 scenarios (35%) had con-

flicts because two developers independently added methods with
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Table 1: Precision and recall results according to the predictors considered. WDS means without different spacing.

Both

Predictors

Both

Predictors

WDS

EditSameMC
EditSameMC

WDS
EditDepMC

Precision 56.29% 57.99% 55.51% 56.71% 8.85%

Recall 83.62% 82.67% 82.45% 80.85% 13.15%

Table 2: EditSameMC false positive analysis.

Project Editions Summary Interference

JavaPoet Parents change unrelated variables No

OpenGrok

One parent changes a variable assignment

passed as an argument in a method call

edited by the other parent

Yes

Jackson

Databind

One parent changes a variable assignment

used by the other developer to change an

if statement condition

Yes

CorfuDB

One parent changes a variable assignment,

while the other parent changes this same

variable method call

Yes

Swagger

Core
Parents change unrelated variables No

Wire

One parent changes a variable assignment

used in a for statement condition

changed by the other parent

Yes

Jackson

Databind
Parents edit unrelated variables No

OkHttp One parent refactors No

Restheart One parent refactors No

Web

Magic

One parent removes commands inside an if

body declaration while the other parent

changes the if statement condition

Yes

the same signature and different declarations, in 1 scenario (2.5%)

both developers edited the same list of access modifiers, and in 1

scenario (2.5%) both developers edited the same class implements

declaration.

Furthermore, in our sample, 33 merge scenarios have build con-

flicts not associated with the predictors. In this sample, the most

frequent situation in build conflicts— a total of 20 conflicts (60.61%)—

happens when one developer adds a new reference to a program

element— such as a class, a method, or a variable— while the other

developer deletes or renames that element. For example, in one

of project Blueprints merge scenarios, one developer adds a new

method calling another method that was removed by the other

developer. Consequently, after the merge the compiler could not

build the file containing the reference to the removed method.

In contrast, the second most frequent cause for build conflicts

in the false negatives sample are syntactic malformed programs

after the merge. More specifically, 10 merge scenarios (30.31%) from

projects Java Driver, Cloud Slang, and Hdiv have broken builds

because some of the files did not have the expected license header,

causing a compilation error on Travis CI.

The remaining three merge scenarios in the false negatives sam-

ple have different conflict causes. In one merge scenario from

project ScribeJava, while one contribution adds a new class im-

plementing an existing interface, the other developer adds a new

method to this interface. After the merge, there is a compilation er-

ror because the newly added class does not implement all interface

methods.

One build conflict from project Blueprints has an occurrence

of the SameSignatureMC pattern where both contributions copy

and paste the same method across different repositories and one of

them edits the method indentation. Because of that, the line-based

merge tool reported a conflict and the developer responsible for

the integration tried to fix the conflict by copying and pasting the

two versions of the same method to the resulting file. As a result,

there is a compilation error due to duplicate method declarations.

Conversely, if one had used a semistructured merge tool in this

merge scenario, there would not be a merge nor a build conflict

because FSTMerge only reports SameSignatureMC conflicts when

one of the contributions edits the code content, ignoring spacing

changes.
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Table 3: EditDepMC false positive analysis.

Project Editions Summary Interference

OkHttp

One parent changes one method while

the other parent changes this method

call inside the other method

Yes

Jackson

Databind
One parent refactors No

Cloudify

One parent changes an if statement condition

inside of which there is a call to the method

edited by the other parent. The other parent

adds a new return command to the

second method

Yes

Jackson

Databind
One parent edits comments No

Wire

Both parents change

the same variable assignment which is

passed as an argument from one method

to the other

Yes

Truth One parent refactors No

Moshi One parent refactors No

JavaParser One parent refactors No

Retrofit One parent refactors No

Singularity One parent refactors No

The last merge scenario containing a build conflict in the false

negatives sample comes from the Jackson-core project. Figure 3

depicts the differences between the merge commit parents. The left

side parent removed the line containing the local declaration of

variable f and added it as a parameter to the method. Meanwhile,

the right side parent edited INPUT variable content.

Because the contributions edited consecutive lines of the same

method —variables f and INPUT declarations— the line-based tool

reports a conflict involving these lines. The developer tried to re-

solve this conflict by copying and pasting both local variable dec-

larations to the resulting file. However, he did not notice the new

parameter added by one of the parents. Consequently, variable f

has two local declarations, causing a compilation error.

This last build conflict is actually an EditSameMC instancemissed

by FSTMerge. This happens because, as explained in Chapter ??,

FSTMerge cannot match methods when their signature is changed.

Therefore, this merge scenario has an EditSameMC instance associ-

ated with a conflict, which makes it a true positive in our sample

that the actual infrastructure is not able to detect.

As for the false negative test conflicts, our sample has three in-

stances coming from projects Jedis and Wire. Two of these conflicts

happened because not directly dependent methods were edited,

and the third one happened because one developer updated a test

case executing a method that was edited by the other developer.

7 HOW EFFECTIVE ARE THE CONFLICT
PREDICTORS?

The precision and recall metrics gives a notion of how effective an

awareness tool considering EditSameMC and EditDepMC predictor

would be if it was used during the development of the 45 projects

from our sample. Such evidence can guide better decisions regarding

a awareness tool conflict awareness strategy.

The precision indicates that for over half— 57.99%, after remov-

ing the different spacing cases— of the merge scenarios where

the tool triggers an alarm, it is indeed alerting developers about

changes associated with merge, build and test conflicts. Meanwhile,

the recall indicates that we capture 82.67% of the merge scenarios

containing merge, build and test conflicts by using an awareness

tool considering both predictors.

However, to establish the ground truth for build and test conflicts

we rely on the status of building and testing processes executed

by Travis CI. Whereas this provides quite precise guarantees for

build conflicts, the guarantees for test conflicts are as good as the

project test suites. So, even for projects with strong test suites, actual

interferences might be missed by the existing tests. As a matter of

fact, during the false positive analysis we find that 8 out of 20 (40%)

false positive instances are missed interferences. This evidence

suggests that if we had better test cases our precisionwould increase.

In contrast, better test cases would find more interferences not

caused by the predictors as well. Consequently, the precision results

we report represent lower bounds of actual interferences, whereas

the recall results are upper bounds of interferences.

Furthermore, we note a significant difference between the two

predictors’ precision and recall when we analyze them individu-

ally. While EditSameMC precision is 56.71%, EditDepMC precision

is only 8.85%. Likewise, while EditSameMC recall is 80.85%, Ed-

itDepMC recall is 13.15%. Because there is not much difference

between the measured precision and recall considering the pre-

dictors together and EditSameMC individually, there is significant

evidence that EditSameMC instances dominate our measurements.

This is due to the fact that EditDepMC instances are not associated
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Figure 3: Merge scenario from Jackson-core project.

with merge conflicts, which are the most numerous in our sample.

Nonetheless, we consider that a solution containing both predictors

would still be advisable.

Our precision and recall results provide evidence to guide dif-

ferent conflict detection strategies depending on each team prefer-

ences. For instance, if one particular team prefers to be conservative

and alert developers about a large part of the conflicts at the cost

of dealing with some false positives, than detecting EditSameMC

and EditDepMC as we do in this study is a reasonable strategy. In

contrast, if a team aims at precision, even at the cost of loosing

some conflicts, than it could alert developers about EditSameMC

instances only when the contributions edit the same or consecutive

lines of the same method, which necessarily leads to merge con-

flicts. This approach is similar to Crystal [8], a tool that proactively

integrates commits from different developer repositories with the

purpose of warning developers of merge, build and test conflicts.

Nevertheless, checking if the same lines of the same method were

edited would cost less than performing Crystal’s integration rou-

tine. Finally, there is also the possibility of using other methods to

further increase the predictors’ precision without compromising

their recall as we further detail in the next section.

8 STRATEGIES TO IMPROVE THE PRECISION
AND RECALL OF THE CONFLICT
PREDICTORS

The false positives and false negatives analysis provides insights of

opportunities to further increase an awareness tool precision and

recall. In this section we discuss such results and the actions they

support.

During the false positives analysis, we find 8 cases— 5 Edit-

SameMC, and 3 EditDepMC— where, even though there are no

conflicts associated, it would still be advisable to alert developers

about such changes because there are interferences. For example,

in one EditSameMC instance from project Web Magic, while one

developer removes code inside an if statement, the other developer

changes the if statement condition.

Conversely, we also find 9 false positive cases— 5 EditSameMC

and 7 EditDepMC— where there is clearly no interference because

one of the contributions does not alter program semantics. For in-

stance, in one EditDepMC instance from project Jackson Databind,

one of the contributions renames a local variable, while in an Ed-

itSameMC case from project RESTHeart one of the contributions

simply removes an extra semicolon. By observing the types of

changes that were made, we learn about strategies that might im-

prove the conflict predictors precision. We can divide them in the

following two categories:

(1) Implement strategies to identify and ignore cases where

there is no interference;

(2) Implement strategies to identify possible interferences.

Regarding the first category, we already use in this study a strat-

egy to detect cases where one of the contributions changes only

code spacing. Considering our sample, this strategy improves the

overall precision in 2.93%. Another simple strategy would be de-

tecting when one of the contributions edits only comments, as it

happens in one case from project Jackson Databind

Perhaps, a possible strategy to detect and ignore cases with

clearly no interference would be to run refactoring detection tools,

such as Tsantalis et al. [30] propose, to detect and ignore predic-

tor cases where one of the contributions performs solely refactor-

ing editions without changing program semantics. However, some

refactorings, such as renamings, might cause build conflicts. For

example, when inside the same method one developer renames a

local variable while the other developer adds code using this same

variable. Perhaps, a safer way to use this strategy would be in the

context of a tool such as Crystal. While running its integration rou-

tine Crystal would be able to provide more comprehensive alerts by

adding a refactoring detection algorithm to its integration routine.

For example, if no conflicts are detected, but both contributions

change the program semantics it could alert developers to be more

cautious about this integration scenario. Conversely, if no conflicts

are detected and one of the contributions performs only refactor-

ings, then Crystal could report that there is no interference in this

scenario. We suggest this analysis as a future work in Section 12.

Nonetheless, in an environment with many developers committing

often, Crystal’s speculative analysis might become to expensive.

For the second category of strategies, in Section 2, we mention

that interferences often happens when there is data or control flow

between the contributions. Therefore, one possible mechanism to

identify possible interferences would be to check the existence of

information control flow between the contributions as an approxi-

mation for computing interferences. This is exactly what Filho [15]

investigates. He analyzed a total of 157merge scenarios from 52 Java

projects containing EditSameMC predictors. He finds information

control flow in 64% of the merge scenarios. Then, after a manual

analysis, he reports that there was indeed interference in 42.86% of

the merge scenarios with information flow between contributions.

He also describes improvements to increase the precision of his

technique.

Alternatively, one could identify interference by using an ap-

proach similar to Böhme et al. [7], which proposes to generate

regression tests that expose change interaction errors. They do that

by generating a graph called Change Dependence Graph (CDG) to

summarize the control flow and dependencies across changes. The
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CDG is then used as a guide during program path exploration via

symbolic execution— thereby producing test cases which witness

change interaction errors. An extension of this strategy, generating

test cases exercising commands changed by both developers, might

be able identify more interferences.

Regarding the false negatives analysis, we consider that it would

not be hard to detect most part of them. For example, all merge

conflicts from the false negatives sample would be detected by the

conflict pattern described in our previous work [2]. Syde [18], a tool

that provides team awareness by capturing developers’ editions as

atomic AST changes and warns developers if they change the same

nodes, would be able to detect such cases as well. Furthermore,

except for the build false negatives caused by the missing license

headers from specific project rules, the other build conflicts related

to one contribution adding a reference to a program element which

was renamed, moved, or deleted by the other contribution are al-

ready detected by existing awareness tools such as Palantír, Syde,

and Crystal [8, 18, 26]. Such evidence suggests that practices used

by these tools are feasible as well.

9 ARE BUILD AND TEST CONFLICTS NOT
THAT FREQUENT AFTER ALL?

Although this study does not aim to measure build and test conflicts

frequency, we could not help to notice that despite analyzing a

considerable amount of merge scenarios and projects in the first

phase of the study, we did not findmany build and test conflicts. This

becomes more evident when we compare our results to previous

studies assessing the frequency of build and test conflicts. Kasi

and Sarma [20] report build conflicts occurring in ranges between

2-15%, while Brun et al. [8] describe both kinds of conflicts ranging

around 33%. In this section we discuss some of the reasons why our

numbers are so different compared to other studies.

We believe there are mainly two reasons for such contrasting

numbers and they are both related to differences between how we

collect test and build conflicts. First, the previous studies rely only

on the merge commit build status. They do not consider parents

commit build status. This way, false positives might have been

introduced. For example, the build might have been already broken

or with failing tests before the merge. In such cases, we consider the

merge commit broken build or failed test was carried over from its

broken parents, instead of being caused by conflicting contributions.

Second, because previous studies perform build and tests locally,

some part of errored and failed builds might have been caused by

external or configuration problems, for example, due to unsolved

project dependencies. In our study we mitigate both threats since

we analyze Travis CI log report to filter builds with errors caused

by external problems, and we also check the merge commit parents

status. This way we increase the confidence that the merge commit

build problems are caused by conflicting contributions.

The decision of analyzing merge commits that occurred after the

project has adopted Travis CI might have impacted the conflicts

frequency. According to previous studies [31], the adoption of CI

practices help to maintain the code quality. This is so because, when

a project adopts CI practices it uses automated scripts to run build

and testing. Thus, the developer responsible for the integration

might be detecting and resolving most part of the conflicts locally,

before pushing changes to the shared repository. Such perception

seems to be aligned with previous empirical evidence [23] that

broken builds occur more frequently in regular commits than in

merge commits.

We believe that build and test conflicts occur more frequently

than what we report here. As we narrow our numbers while try-

ing to increase the soundness of our results, we might be loosing

build and test true positives as well. However, we need further

studies to understand the impact of our methods in our results. A

better way for evaluating conflicts— not only build and test, but

also merge conflicts— would be by having access to developers

private workspaces instantaneously evaluating the cases without

any external influences.

10 THREATS TO VALIDITY

Our empirical analyses and evaluation naturally leave open a set

of potential threats to validity. We discuss some of these threats in

this section. One of the threats concerning our metric for detecting

test conflicts is that we rely on the projects existing test suites to

detect them. This means that part of the interferences might escape.

As mentioned before, better test cases would probably increase the

precision, and decrease the recall reported in this study. Nonethe-

less, because the notion of interference we use is not computable,

it is impossible to detect all semantic conflicts.

With regard to the internal validity, as we reuse previous in-

frastructure to reproduce merge scenarios, we inherit part of its

threats as well [2]. In particular, because FSTmerge fails to identify

renaming changes, we miss EditSameMC instances where one of

the contributions changes the method signature. In fact, one of the

build false negatives we analyze is actually a true positive that FST-

Merge misses because of method renaming. In addition, on Travis,

a build can be composed of a set of jobs; each job varies itself in

some way. For example, different jobs can be used to simulate the

same project with different environment configurations. Therefore,

it is possible to declare which jobs should not be considered for the

final build status. Thus, if a build conflict happens on a non-valid

job, we do not detect it. For future work, we could edit travis.yml

file aiming to consider all jobs for the final build status. However,

non-valid jobs are used only to verify how the project behaves on

a specific configuration. Therefore, problems in these scenarios

possibly would not lead developers to spend time with them.

Regarding external validity, in this study we focus on open-

source Java projects hosted on GitHub, using Travis CI and Maven.

Thus, results generalizability to other platforms and programming

languages is limited. Such requirements were necessary to reduce

the influence of confounds, increasing internal validity. We need

subsequent studies to further understand the precision and recall of

the predictors for other programming languages. Nevertheless, we

are confident that we have analyzed active and substantial systems

from various domains. Finally, the samples we manually analyze are

small, which makes it hard to estimate the impact of implementing

the proposed improvements. For future work, we could increase

the sample size.
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11 RELATEDWORK

A number of empirical studies provide evidence about collaborative

development issues. In previous sections we have already men-

tioned some of them. For example, Kasi and Sarma [20] and Brun

et al. [8] studies reproduced merge scenarios from different GitHub

systems with the purpose of measuring the frequency of merge

scenarios that resulted in merge, build and test conflicts. In this

paper, although we do not aim to measure the conflicts frequency,

we discuss the reasons why our results are different from those

studies. Moreover, contrasting with previous studies, we use a much

larger sample, and a semistructured merge tool that avoids a large

number of spurious conflicts often reported by typical line-based

tools that are still used in practice.

A empirical study performed by Cataldo and Herbsleb [9] tried

to understand different aspects leading to conflicts. They presented

an empirical analysis of a large-scale project where they examined

the impact that software architecture characteristics, and organiza-

tional factors have on the number of conflicts. They concluded that

architecture related factors such as the nature and the quantity of

component dependencies, as well as organizational factors such as

the geographic dispersion of development teams, can lead to higher

integration failure rates.

Likewise, Leßenich et al. [21] performed a survey to understand

what factors are perceived by developers as being critical for in-

creasing the risk of merge conflicts. From this survey, they selected

7 potential conflict predictors such as the size of changes, the num-

ber of files changed, and the location of changes. However, none of

these predictors correlates with the number of merge conflicts.

Furthermore, Shihab et al. [27] presented an empirical study

that evaluated and quantified the relationship between software

quality and various aspects of the branch structure used in soft-

ware projects. They reported that, indeed, the branching strategy

does have an effect on software quality and that misalignment

of branching structure and organizational structure is associated

with higher post-release failure rates. Finally, Estler et al. [14], in-

vestigated the impact of awareness information in the context of

globally distributed software development. Among their findings,

they concluded that insufficient awareness information affects more

negatively developers’ performance than actual merge conflicts.

Our work complements these works because we also examine

factors related to integration failures on collaborative development

environments. However, we analyze different factors.While Cataldo

and Herbsleb [9] and Leßenich et al. [21] analyzed architecture

level and organizational factors, and Shihab et al. [27] analyzed

branching strategies, we analyze the effectiveness of code changes

as conflict predictors.

Tools and strategies to support collaborative development envi-

ronments use different strategies to both decrease integration effort,

and improve correctness during task integration. Throughout this

work we havementionedmost of them. Cassandra [20], for example,

is a tool that analyzes task constraints to recommend an optimum

order of tasks execution so that conflicts can be avoided. While

the tasks are being developed, Palantír [26], informs developers of

ongoing parallel changes, and Crystal [8], proactively integrates

commits from developer repositories with the purpose of warning

them if their changes conflict.

In contrast, other awareness tools, such as Syde [18], build

code artifact ASTs to make the analysis of changes more precise.

WeCode [16] continuously merges uncommitted and committed

changes to detect conflicts on behalf of developers before they

check-in their changes. Moreover, Bellevue [17], is an IDE exten-

sion to make committed changes always visible, and code history

accessible inside developers’ workspaces.

Alternatively, when the performed tasks are ready for being

merged, TIPMerge [12] has an algorithm that recommends develop-

ers who are best suited to performmerges considering different met-

rics such as developers’ past experience in the project, their changes

in the involved branches, and dependencies among modified files.

Finally, given that it is not always possible to detect conflicts be-

fore code integration, tools like FSTMerge [4], and JDime [3] offer

solutions to reduce integration effort by automating the resolution

of some types of conflict, such as the ordering conflicts.

Finally, MergeHelper [25] captures code changes as sequences

of fine-grained atomic operations. This way, developers can replay

all changes involved in a conflict, which can help in resolving them.

Similarly, MolhadoRef [13], is also an operation-based approach

that records refactoring operations used to produce one version

and replays them when merging different contributions. Our work

brings evidence and insights to improve such tools.

12 CONCLUSIONS

In this paper we conducted an empirical study to measure the pre-

cision and recall for EditSameMC and EditDepMC predictors. Our

results indicate that, considering both conflict predictors together,

we achieve a precision of 57.99% and a recall of 82.67%. Such ev-

idence is useful to guide different conflict awareness strategies.

Moreover, we also suggest strategies that could further improve

the precision and recall of our predictors.

This study presents different directions for future works. Per-

haps, the most important one would be to implement the many

improvements we suggested here to provide empirical evidence

of their practical value. Moreover, we believe that replicating this

study monitoring developers private repositories would be an in-

teresting contribution. This study would provide a better notion

about the real frequency of conflicts.
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