
Should we replace our merge tools?
Guilherme Cavalcanti, Paulo Borba and Paola Accioly

Informatics Center
Federal University of Pernambuco

Recife, Brazil
{gjcc,phmb,prga}@cin.ufpe.br

Abstract—While unstructured merge tools try to automatically
resolve merge conflicts via textual similarity, semistructured
merge tools try to go further by partially exploiting the syntactic
structure and semantics of the involved artefacts. Previous studies
compare these merge approaches with respect to the number
of reported conflicts, showing, for most projects and merge
situations, a reduction in favor of semistructured merge. However,
these studies do not investigate whether this reduction actually
leads to integration effort reduction (Productivity) without nega-
tive impact on the correctness of the merging process (Quality).
To analyze this, and to better understand how these tools could
be improved, we propose empirical studies to identify spurious
conflicts reported by one approach but not by the other, and
interference reported as conflict by one approach but missed by
the other.

Keywords-software merging; collaborative development; ver-
sion control systems; empirical studies

I. INTRODUCTION AND MOTIVATION

In a collaborative development environment, developers
often perform tasks in an independent way, using individual
copies of project files. As a result, when integrating changes
from each task, one might have to deal with conflicting
changes and dedicate substantial effort to resolve them. These
conflicts might be detected during merging, building, and
testing, impairing development productivity. They might also
not be detected during integration and testing, escaping to a
production version and compromising correctness [3], [4], [8].
To deal with these problems, tools using different strategies to
decrease integration effort and improve integration correctness
have been proposed. For example, unstructured merge tools,
which are widely used in industry, are purely text-based
and resolve conflicts via textual similarity [6]. Alternatively,
a semistructured merge tool tries to resolve conflicts by
partially exploiting the syntactic structure and semantics of
the involved artefacts. For program elements whose structure
is not explored by semistructured merge, it simply applies the
usual textual resolution from unstructured merge [1].

Previous studies compare those two merge approaches with
respect to the number of reported conflicts, showing, for most
projects and merge situations, a reduction in favor of semistruc-
tured merge [1], [5]. This reduction is mainly due to the
automatic resolution of some of the obvious unstructured merge
reported spurious conflicts (false positives), which happens
when, for example, developers add different methods to the
same file text area. This evidence, however, needs to be further
verified to justify industrial adoption of semistructured merge,

since the observed reduction might be obtained at the expense of
missing actual interference between developers changes (false
negatives). Moreover, given that the set of conflicts reported
by semistructured merge in previous studies is often smaller
but not a subset of the set reported by unstructured merge,
semistructured merge could even be introducing other kinds
of false positives that might be harder to resolve than the ones
it eliminates. As even a minor disadvantage of a new tool can
become a huge barrier for its adoption in practice, if we want to
move forward on the state of the practice on merge tools, it is
important to have solid evidence and further knowledge about
false positives and false negatives resulting from those two
merge approaches. This way developers can choose the merge
approach to be used in terms of their impact on integration
effort (Productivity) and correctness (Quality)—factors that are
critical to decide which approach should be used in practice.

II. PROPOSED RESEARCH

The main challenge for comparing the unstructured and
semistructured merge approaches is establishing ground truth
for integration conflicts (and therefore false positives and false
negatives), or, more generally, unplanned interference between
development tasks. In this context, interference is actually
not computable [2]. Semantic approximations through static
analysis or testing are imprecise and expensive, in the case
of information flow analysis. Finally, experts who understand
the integrated code (possibly developers of each analyzed
project) would be necessary to determine truth, without
completely eliminating the risk of missing false positives
and false negatives. So, due to their associated cost, these
alternatives would significantly reduce the analyzed sample
without guarantees of precision. To avoid that, we prefer to
relatively compare merge approaches with regard to the added
occurrence of false positives and false negatives from one
approach in relation to the other. We can do that by simply
observing when they report different results.

So, to compare the unstructured and semistructured merge
approaches, we need first to understand their difference in
behavior. We empirically and systematically analyzed their
implemented algorithms to observe how and when they behave
differently, and how this might lead to false positives and false
negatives. Table I summarizes the observed added false posi-
tives and false negatives of each merge approach. For example,
one of the main weaknesses of unstructured merge is its inabil-
ity to detect rearrangeable declarations. In Java, for instance,

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

DOI 10.1109/ICSE-C.2017.103

323

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE
DOI 10.1109/ICSE-C.2017.103

323

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE
DOI 10.1109/ICSE-C.2017.103

323

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE
DOI 10.1109/ICSE-C.2017.103

325

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE
DOI 10.1109/ICSE-C.2017.103

325

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE
DOI 10.1109/ICSE-C.2017.103

325

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE
DOI 10.1109/ICSE-C.2017.103

325

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE
DOI 10.1109/ICSE-C.2017.103

325

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE
DOI 10.1109/ICSE-C.2017.103

325

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE
DOI 10.1109/ICSE-C.2017.103

325

Table I: Unstructured and Semistructured merge added false positives and false negatives
False Positives

Name Description Merge Approach
ordering conflicts conflicts due to changes in the order of commutative and associative declarations unstructured merge
renaming conflicts conflicts due to changes in body and signature of method or constructor declarations semistructured merge

False Negatives
Name Description Merge Approach

duplicated declarations error when developers add declarations with the same name/signature in different text areas unstructured merge
type ambiguity error when developers import members with the same name but from different packages semistructured merge
new element referencing old one when one developer adds a new element that references an existing one that is edited by the other developer semistructured merge
anonymous blocks when developers make changes in static blocks semistructured merge

a change in the order of methods and fields, as in Figure 1(a),
has no semantic impact on program behavior, but unstructured
merge might report false positives in such cases— the so-
called ordering conflicts. In contrast, this is not reported by
semistructured merge. That ability to identify commutative and
associative declarations, however, might also cause problems
with semistructured merge. The semistructured merge algorithm
assumes that the order of import declarations does not matter,
allowing developers to add import declarations in the same text
area of the program. However, this might lead to a type ambi-
guity error and build, or behavioral issues because the import
declarations might involve members with the same name but
from different packages. This is illustrated in Figure 1(b), where
both developers imported packages with a List class. In that
case, an unstructured tool would report a conflict when the im-
port statements appear in the same or adjacent lines of the code.

(a) Ordering conflict
(Unstructured merge)

(b) Type ambiguity error
(Semistructured merge)

Figure 1: Ordering Conflict and Type Ambiguity Error. Conflict
markers in red.

A. Empirical Evaluation
Our evaluation aims to investigate whether semistructured

merge reduction on the number of reported conflicts in relation
to unstructured merge [1], [5] actually leads to integration
effort reduction (Productivity) without negative impact on
the correctness of the merging process (Quality). We intend
to do that by reproducing merges from the full development
history of different GitHub projects, while collecting evidence
about the occurrence of conflicts, and kinds of diverging false
positives and false negatives described in Table I. In particular,
we investigate the following research questions:

• RQ1 When compared to unstructured merge,
does semistructured merge reduce unnecessary
integration effort by reporting less spurious conflicts?

• RQ2 When compared to unstructured merge,
does semistructured merge compromise integration
correctness by missing more non spurious conflicts?

To answer RQ1, we compute the number of false positives
added by semistructured merge (spurious conflicts reported
by semistructured merge and not reported by unstructured
merge) metric. We also compute the number of false positives
added by unstructured merge (spurious conflicts reported by
unstructured merge and not reported by semistructured merge)
metric. As different conflicts might demand different resolution
effort [7], comparing conflict numbers might not be enough
for understanding the impact on integration effort. So, to better
understand the effort needed to resolve different kinds of con-
flicts, we intend to manually analyze a sample of the identified
false positives to estimate the impact on integration effort. Our
goal with this analysis is to simply check that the computed
metrics are not obviously bad choices as proxies for integration
effort. Finally, for answering RQ2, we compute the number
of false negatives added by semistructured merge (conflicts
missed by semistructured merge and correctly reported by
unstructured merge), and the number of false negatives added
by unstructured merge (conflicts missed by unstructured merge
and correctly reported by semistructured merge) metrics.

It is important to remark that we do not need to measure
the occurrence of false positives and negatives when both
approaches behave identically. Although important for
establishing accuracy in general, these are not useful for
relatively comparing merge approaches.

III. CONCLUSIONS

Previous studies provide evidence that semistructured merge
reduces, for most but not all projects and scenarios, the number
of conflicts in relation to unstructured merge [1], [5]. However,
practitioners would hardly adopt a new merge tool without
knowing whether this reduction actually leads to merge effort
reduction without compromising the correctness of the merging
process. So, as even a minor disadvantage of a new tool
can become a huge barrier for its adoption in practice, in
this paper, we propose a research to relatively compare these
merge approaches with respect to the resulting occurrences of
false positives and false negatives. In particular, false positives
represent unnecessary integration effort, which decreases
productivity, because developers have to resolve conflicts that
actually do not represent interference. Besides that, false nega-
tives represent build or behavioral errors, negatively impacting
software quality and correctness of the merging process.

324324324326326326326326326326

REFERENCES

[1] S. Apel, J. Liebig, B. Brandl, C. Lengauer, and C. Kästner. Semistructured
merge: Rethinking merge in revision control systems. In Proceedings of
the 19th ACM SIGSOFT Symposium and the 13th European Conference
on Foundations of Software Engineering, ESEC/FSE’11. ACM, 2011.

[2] V. Berzins. On merging software extensions. Acta Informatica, 1986.
[3] C. Bird and T. Zimmermann. Assessing the value of branches with what-

if analysis. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, FSE’12. ACM,
2012.

[4] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Proactive detection
of collaboration conflicts. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software
Engineering, ESEC/FSE’11. ACM, 2011.

[5] G. Cavalcanti, P. Accioly, and P. Borba. Assessing semistructured merge
in version control systems: A replicated experiment. In Proceedings of
the 9th International Symposium on Empirical Software Engineering and
Measurement, ESEM’15. ACM, 2015.

[6] S. Khanna, K. Kunal, and B. C. Pierce. A formal investigation of diff3.
In Proceedings of the 27th International Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS’07.
Springer-Verlag, 2007.

[7] T. Mens. A state-of-the-art survey on software merging. IEEE Transactions
on Software Engineering, 2002.

[8] T. Zimmermann. Mining workspace updates in cvs. In Proceedings of the
Fourth International Workshop on Mining Software Repositories, MSR’07.
IEEE Computer Society, 2007.

325325325327327327327327327327

