
Information and Software Technology 82 (2017) 173–176
Contents lists available at ScienceDirect

Information and Software Technology
journal homepage: www.elsevier.com/locate/infsof

An idiom to represent data types in Alloy
Rohit Gheyi a , ∗, Paulo Borba b , Augusto Sampaio b , Márcio Ribeiro c
a Federal University of Campina Grande, Brazil
b Federal University of Pernambuco, Brazil
c Federal University of Alagoas, Brazil
a r t i c l e i n f o
Article history:
Received 8 April 2016
Revised 1 October 2016
Accepted 7 November 2016
Available online 9 November 2016
Keywords:
Data types
Alloy

a b s t r a c t
Context: It is common to consider Alloy signatures or UML classes as data types that have a canonical
fixed interpretation: the elements of the type correspond to terms recursively generated by the type
constructors. However, these language constructs resemble data types but, strictly, they are not.
Objective: In this article, we propose an idiom to specify data types in Alloy.
Method: We compare our approach to others in the context of checking data refinement using the Alloy
Analyzer tool.
Results: Some previous studies do not include the generation axiom and may perform unsound analysis.
Other studies recommend some optimizations to overcome a limitation in the Alloy Analyzer tool.
Conclusion: The problem is not related to the tool but the way data types must be represented in Al-
loy. This study shows the importance of using automated analyses to test translation between different
language constructs.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Many programming and formal specification languages support
the definition of data types with a fixed unique interpretation. Ab-
stract or algebraic types in functional languages (such as Haskell),
for instance, have a fixed initial interpretation: the elements of the
type correspond to the terms recursively constructed by interpret-
ing type operations as constructors. Similar, Models in ModulaZ
and Z schemas [1] , among others, have a fixed interpretation de-
fined in terms of the underlying used representation (model) for
the type elements. For example, specifying in PVS a record repre-
senting an account that has a balance as:

the elements of account are defined in terms of the elements
of its component (integer). For each integer in this language, there
is an element of the account type. The number of elements of Ac-
count is precisely the number of elements of int . In both cases, the
language semantics relies on implicit axioms that characterize the
fixed interpretation.

∗ Corresponding author.
E-mail addresses: rohit@dsc.ufcg.edu.br (R. Gheyi), phmb@cin.ufpe.br (P. Borba),

acas@cin.ufpe.br (A. Sampaio), marcio@ic.ufal.br (M. Ribeiro).

Contrasting, languages also support the definition of data types
with more flexible, non-unique, interpretations [2] . This is the case
of Z given sets, UML classes, and OBJ theories. Any set of elements
that satisfies the axioms associated to the type definition and op-
erations is a valid interpretation for the data type. The set of recur-
sively constructed terms might be just one among many possible
interpretations. The semantics of these language constructs assume
no implicit axioms that characterize a fixed interpretation. If de-
sired, developers should explicitly specify them.

Although previous studies [3] relate Alloy signatures to data
types, they do not explicitly specify axioms that characterize such
interpretation. In fact, similarly to UML classes and OBJ theories,
the semantics of Alloy [3] signatures (Section 2) does not assume
a fixed interpretation. As a consequence, analyses such as data re-
finement checking, which only applies to data types having a fixed
canonical interpretation, may be unsound in Alloy. We motivate
this problem by applying the traditional data refinement analysis
to Alloy signatures that do not represent data types in Section 5 .

To avoid this problem, we propose an Alloy idiom to encode
data types (Section 3). We illustrate how to explicitly specify in Al-
loy so called generation and canonicalization axioms that are im-
plicit in other languages. We also show how to perform a sound
data refinement in Alloy using the Alloy Analyzer (Section 4). Alloy
Analyzer may also be useful for testing the relationship of other
language constructs.

http://dx.doi.org/10.1016/j.infsof.2016.11.003
0950-5849/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.infsof.2016.11.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.11.003&domain=pdf
mailto:rohit@dsc.ufcg.edu.br
mailto:phmb@cin.ufpe.br
mailto:acas@cin.ufpe.br
mailto:marcio@ic.ufal.br
http://dx.doi.org/10.1016/j.infsof.2016.11.003

174 R. Gheyi et al. / Information and Software Technology 82 (2017) 173–176
2. Alloy

Next we give a brief overview of Alloy 4. An Alloy model or
specification is a sequence of paragraphs of two kinds: signatures
that are used for defining new types, and constraint paragraphs,
such as facts and predicates, used to record constraints. Each signa-
ture comprises a set of objects (atoms), which associate with other
objects by relations declared in the signatures. A signature para-
graph introduces a type and a collection of relations , called fields,
along with their types and other constraints on their included val-
ues.

Next we show the Alloy models of a computer memory [3] . An
abstract memory (AbsMemory) declares a ternary relation (data)
relating each address to a data item. A concrete memory (Con-
Memory) describes a cache system in terms of the main and cache
ternary relations. The following signatures represent these memo-
ries.

In Alloy, we can declare facts , which introduce constraints that
always hold. For example, the following fact (CanonicalizationAx-
iomAbsMemory) states that there are no distinct abstract memories
with the same data. The all keyword denotes the universal quanti-
fier, whereas the = > operator denotes logical implication.

Predicates are used to package reusable formulae. For example,
the abstract and concrete memories [3] define the write opera-
tion, as declared next. The concrete operation always writes in the
cache. The ++ and - > operators represent the relational override
and product, respectively. Notice that both operations can always
be applied. There is no precondition.

Besides predicates and signatures, we can declare functions . An
abstraction function is provided [3] expressing that the abstract
memory associated with a cache system is obtained by taking the
contents of the main memory, and overriding them with the con-
tents of the cache, which contains the recent updates. Next we
specify an Alloy function representing the retrieve.

Assertions are another kind of constraint paragraph, which de-
clares a set of questions about a model. Suppose we would like to
know whether distinct concrete memories have distinct data in the
main and cache. The following assertion captures this intention.

Table 1
Summary of alloy keywords and operators.

Keyword/operator Meaning
all, some ∀ , ∃
or, and ∨ , ∧
+, ! ∪ , ¬
= > , - > ⇒ , product
++ Override expression
. Relational join

The ! operator denotes negation. Alloy has some other para-
graphs that are used for performing analysis using the Alloy An-
alyzer tool [5] . Alloy Analyzer can be used to verify whether some
property holds for a pre-defined scope , which defines the maxi-
mum number of objects allowed for each signature during analy-
sis. The simulations performed by the Alloy Analyzer tool are sound
and complete up to a given scope . If it does not yield a counterex-
ample, we cannot conclude that the formulae declared in the as-
sertion are valid since the tool is not a theorem prover. We can
gain greater confidence by increasing the scope. Checking the pre-
vious assertion with at most three objects for each signature yields
a counterexample in which two distinct concrete memories have
exactly the same data in the main and in the cache. So, the pre-
vious assertion is not deducible from the constraints in the model.
We can specify a similar canonicalization fact for concrete mem-
ories to avoid the previous counterexample. Table 1 specifies the
meaning of all Alloy keywords and operators used in this article.
3. Idiom

An abstract data type comprises a collection of variables, and a
list of operations that may change their values [1,2] . Next we pro-
pose an idiom to represent a data type D in Alloy. First, we create
the signature D containing a number of relations ri that represent
data type variables where Ti can be a signature or a product of
signatures, as described next.

For each Alloy signature representing a data type D , we must
include the generation axiom [1,2] . Next we present a template of
a formula declared in a fact representing a generation axiom for D .
We must quantify over all relations declared in D .

In some domains, we may add a canonicalization axiom for
each signature representing a data type in a fact. The following fact
states that there are no two different objects of D with the same
values for all relations.

R. Gheyi et al. / Information and Software Technology 82 (2017) 173–176 175

Finally, each data type may include a number of operations.
They can be declared in Alloy using predicates. Each predicate
must declare at least two parameters representing the state of the
data type before and after the operation, as declared next.

4. Example
Suppose we would like to check in Section 2 whether Con-

Memory refines AbsMemory with respect to the write operation us-
ing the functional data refinement rule [1,6] that was proposed
for data types [6] . First of all, we have to check whether Ab-
sMemory and ConMemory are data types. The example presented
in Section 2 does not follow our idiom (Section 3). It does not in-
clude the generation axioms for each data type. Next we include
them.

Now we declare a functional data refinement rule [1] in an as-
sertion.

Performing analysis on the generalRefRule assertion in Alloy An-
alyzer, which supports analyzing high-order quantifications [7] ,
does not yield a counterexample using a scope of at most 16 mem-
ories and 2 Data and 2 Addr . We improve confidence that the data
refinement is sound. It is important to mention that the scope
given to AbsMemory and ConMemory must be derived from the
scope given to Data and Addr when performing analysis in Alloy
Analyzer. For example, for 2 addresses and 2 data, each memory
has 16 values.
5. Related work

Jackson [3, p. 216] states that the concrete memory refines the
abstract one presented in Section 2 without the generation axioms.
It uses a slightly different assertion than generalRefRule to ensure
that conWrite refines absWrite , as described next.

However, checking the data refinement rule (generalRefRule)
[1] in the specification in Section 2 yields a counterexample. It is
not a data refinement. The counterexample generated shows we
have to be careful when applying the traditional technique of data
refinement to language constructions that resemble data types but,
strictly, are not.

Bolton [4] encodes a metamodel of data types in Alloy. Bolton
specifies data types using signatures, and represents all possible
states as signatures. Bolton explicitly encodes all state transitions
of a data type in Alloy. Bolton’s idiom may be time consuming to
encode when there are a number of states and state transitions.
We do not represent a state in a signature. We use predicates to
specify state transitions. Malik et al. [8] present a formal transla-
tion of a Z subset to Alloy to make analysis and visualization pos-
sible for Z users. Malik et al. mention that Z schemas cannot be
directly translated to Alloy signatures. We formalize an idiom to
represent data types using Alloy signatures.

Estler and Wehrheim [9] translate Z specifications in Alloy to
use Alloy Analyzer to check refactorings. It relates a Z data type
to an Alloy signature. According to Estler and Wehrheim, the Al-
loy existential quantifier produces problems within the translation
and, even worse, prohibits a simple verification of refinements [9] .
Estler and Wehrheim recommend using a total bijective represen-
tation relation between the original specifications to overcome this
problem in the tool. Ramananandro [10] translates a Mondex case
study written in Z to Alloy. It uses Alloy Analyzer to check data
refinement. It also relates a Z data type to an Alloy signature. Ra-
mananandro introduces predicates to verify whether the specifica-
tion had enough properties to define the quantified object to over-
come the translation issue. We show this is not a problem related
to existential quantifier in Alloy Analyzer. This happens since the
considered Z schemas are data types. We have to include the gen-
eration axiom.
6. Conclusions

We propose an idiom to specify data types in Alloy. This work
clarifies issues found in Alloy Analyzer reported by previous stud-
ies [3,9,10] . The problem is not related to existential quantifier in
Alloy Analyzer but the way data types are represented in Alloy.
The generation axiom may cause state explosion when perform-
ing analysis on Alloy Analyzer. Developers may perform some op-
timizations to overcome this issue, but they must be careful to
avoid making unsound analysis. This study shows the importance
of using automated analyses to test translation between different
language constructs. Automatic analysis tools are far more ruthless
than human reviewers [3] . Finally, we recommend encoding part
of the translation of other language constructs in Alloy and using
Alloy Analyzer to help to avoid similar misunderstandings.
Acknowledgments

We would like to thank the anonymous reviewers. This work
was partially supported by CNPq and CAPES grants.
References

[1] J. Woodcock , J. Davies , Using Z: Specification, Refinement, and Proof, Prentice
Hall, 1996 .

http://dx.doi.org/10.13039/501100003593
http://dx.doi.org/10.13039/501100002322
http://refhub.elsevier.com/S0950-5849(16)30317-2/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30317-2/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30317-2/sbref0001

176 R. Gheyi et al. / Information and Software Technology 82 (2017) 173–176
[2] C. Jones , Systematic Software Development using VDM, second ed., Prentice

Hall, 1990 .
[3] D. Jackson , Software Abstractions: Logic, Language and Analysis, first ed., MIT

Press, 2006 .
[4] C. Bolton , Using the Alloy analyzer to verify data refinement in Z, ENTCS 137

(2005) 23–44 .
[5] D. Jackson , I. Schechter , I. Shlyakhter , Alcoa: the Alloy constraint analyzer, in:

ICSE, 20 0 0, pp. 730–733 .
[6] C. Hoare , Proof of correctness of data representations, Acta Inf. 1 (4) (1972)

271–281 .

[7] A. Milicevic , J.P. Near , E. Kang , D. Jackson , Alloy ∗: a general-purpose high-
er-order relational constraint solver, in: ICSE, 2015, pp. 609–619 .

[8] P. Malik , L. Groves , C. Lenihan , Translating Z to Alloy, in: Abstract State Ma-
chines, Alloy, B and Z, vol. 5977, 2010, pp. 377–390 .

[9] H.-C. Estler , H. Wehrheim , Alloy as a refactoring checker? ENTCS 214 (2008)
331–357 .

[10] T. Ramananandro , Mondex, an electronic purse: specification and refinement
checks with the alloy model-finding method, Formal Aspects Comput. 20 (1)
(2007) 21–39 .

http://refhub.elsevier.com/S0950-5849(16)30317-2/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30317-2/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30317-2/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30317-2/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30317-2/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30317-2/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30317-2/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30317-2/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30317-2/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30317-2/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30317-2/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30317-2/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30317-2/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30317-2/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30317-2/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30317-2/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30317-2/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30317-2/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30317-2/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30317-2/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30317-2/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30317-2/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30317-2/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30317-2/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30317-2/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30317-2/sbref0010

