Advance Access publication on 31 July 2015

(© The British Computer Society 2015. All rights reserved.
For Permissions, please email: journals.permissions @oup.com
doi:10.1093/comjnl/bxv054

Assessing Idioms for a Flexible Feature
Binding Time

RODRIGO ANDRADE '*, MARCIO RIBEIRO?, HENRIQUE REBELO!, PAULO BORBA',
VAIDAS GASIUNAS® AND LUCAS SATABIN?

1Informatics Center, Federal University of Pernambuco, Recife, Brazil
2C0mpuling Institute, Federal University of Alagoas, Maceio, Brazil
3Technische Universitiit Darmstadt, Darmstadt, Germany
*Corresponding author: rcaa2 @cin.ufpe.br

In software product lines development, it is sometimes important to provide a flexible binding time for
features such that developers can choose between static or dynamic feature activation. For example,
software products designed for devices with constrained resources may use a static binding time to
avoid the performance overhead introduced by dynamic binding time activation. However, other
devices can exploit binding time flexibility to support products with a dynamic binding time for some
of their features. To implement this kind of flexibility in a modular way, we can define AspectJ-based
idioms. Researchers have proposed Edicts, an idiom based on Aspect]J and design patterns. In this
article, we argue that this idiom leads to an increase in code duplication, scattering, tangling and size,
which can hamper code reuse, maintenance and understanding. To mitigate such issues, this paper
proposes three idioms based on aspect-oriented programming to implement flexible feature binding.
We apply our three idioms, along with Edicts, to implement a flexible binding time for features in
four different applications. By doing so, we were able to assess the resulting implementations by using
software metrics that judge code-quality factors. Our evaluation suggests that our idioms reduce the
above-mentioned problems when implementing flexible feature binding for the selected features.

Keywords: flexible binding time; software product lines; software metrics; aspect-oriented programming

Received 11 February 2014, revised 24 June 2015
Handling editor: Mariangiola Dezani-Ciancaglini

INTRODUCTION

A software product line (SPL) is a family of software-intensive
systems developed from reusable assets. By reusing assets, it
is possible to construct a significant number of different prod-
ucts by applying compositions of different features [1]. These
features define common characteristics as well as differences
between the respective products within a family. They are also
used to define whether these characteristics are mandatory,
optional or alternative [2]. An SPL paradigm might offer sev-
eral benefits regarding software development and maintenance,
including improvements in the time to market, maintenance
costs, productivity and product quality [1].

Depending on the requirements and composition mecha-
nisms, features may be activated or deactivated flexibly, that is,
at different times. In this context, features may be bound stati-
cally (i.e. during compile time or preprocessing) or dynamically
(i.e. during run or link time). The benefit to the former is to

facilitate an applications’ customizability without any overhead
at runtime [3]. Therefore, static feature binding is suitable for
applications running on devices with limited resources, such
as mobile phones. On the other hand, the latter allows for more
flexibility in terms of performance costs and memory con-
sumption [3]. Furthermore, if the developers are unaware of
the set of features that should be activated before runtime, they
can use dynamic feature binding to activate them on demand.
Dynamic feature binding applies to Dynamic SPLs, which sup-
port late feature-composition changes to address requirements
that vary at runtime [4, 5]. Thus, it is important to provide a
flexible binding time for features so that their execution can be
activated statically or dynamically [3, 6].

One way to support flexible feature binding is by means of
aspect-oriented programming (AOP) [7], which allows features
to be composed both statically and dynamically. Using aspects
to achieve this goal is important because we can implement

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 59 No. 1, 2016

2 R. ANDRADE et al.

these features in a modular way, that is, we can avoid problems,
such as feature code tangling and scattering [7]. Thus, we focus
on AOP solutions to support flexible binding time for features.

To the best of our knowledge, there is only one approach that
implement flexible binding by means of aspects. Chakravarthy
et al. [8] have proposed Edicts, an AOP idiom based on
Aspect] [9] and design patterns [10]. Edicts provides a config-
urable binding time, meaning that developers can change the
binding time (static or dynamic) without rewriting the source
code and traceability. A flexible binding-time implementa-
tion is well modularized and easily identifiable, because it is
located in only one package. The authors designed this idiom
to improve static bind optimization and dynamic bind flexi-
bility. Furthermore, they claim they successfully implemented
flexible feature binding in a non-trivial product line, which
Chakravarthy et al. [8] created by changing the JacORB mid-
dleware. In their paper, the authors provide evidence of the
benefits of Edicts in this product line, what motivated us to
explore the idiom in more detail.

Despite the claim made by the authors of Edicts that they
have achieved these benefits with JacORB, we noticed that
Edicts can lead to some problems when it is applied to static
and dynamic binding for the same platform (i.e. exclusively
for desktops or exclusively for mobiles). For example, dupli-
cated feature code can be found in aspects that implement
a static and dynamic binding time. This risks increasing the
source code and unnecessarily making it difficult to understand,
owing to the need to read replicated parts more than once [11].
Additionally, Edicts can scatter feature code across aspects
and tangle different concerns, and this is evidence that feature
implementations are not well modularized [12]. These issues
might hamper code reuse, maintenance and understanding, and
thereby might reduce development productivity. Moreover, as
far as we know, there is no AOP-based solution in the literature
that provides flexible feature binding in a well-modularized
manner.

In this context, the problems introduced by Edicts motivated
us to design solutions using AOP [13]. As a matter of fact, we use
Edicts as a primary point of reference because the essence of our
work is motivated by the problems beset by this idiom. There-
fore, we propose three idioms to implement a flexible binding
time for features. We use the term ‘idiom’ in a more liberal man-
ner than it is commonly used in the design pattern community.
Furthermore, we refer to ‘idioms’ because our increments are
Aspect]- or CaesarJ-specific and they address a smaller and less
general problem than patterns. We design our solutions to sup-
port flexible binding time for features by means of AOP. Despite
structure similarity, our idioms are not Edicts-based and do not
necessarily demand knowledge on Edicts.

The three idioms we propose are AOP-based, so we use AOP
constructs to extract feature code and implement a static and
dynamic binding time. To evaluate the advantages and disad-
vantages of Edicts and our idioms, we applied them to provide
a flexible binding time for features in different product lines.

In addition, we performed an assessment with respect to code
duplication, scattering, tangling and source-code size by using
a metric suite. In summary, our evaluation shows evidence that
Edicts is subject to the problems just discussed, and suggests
that our idioms mitigate these problems when implementing
flexible feature binding for the selected features.

The main contributions of this work are the following:

(i) We identify deficiencies in Edicts, an existing idiom.

(i) We address these deficiencies by defining three idioms
for flexible feature binding.

(iii)) We apply these 4 idioms (i.e. Edicts and the three we
designed) to provide flexible binding for 18 features in
4 different product lines.

(iv) We assess these four idioms quantitatively, with
respect to code cloning, scattering, tangling and size
by means of software metrics.

(v) We discuss these implementations in terms of feature
interaction and behaviour.

This paper improves our previous work [13] in four ways: by
introducing a novel idiom, by evaluating several new features,
by using a tool to compare the behaviour of the implementa-
tions and by considering two additional metrics to refine the
evidence regarding the benefits and drawbacks of each idiom.
In addition to considering features of a different nature, we have
analysed implementations with alternative features (beyond
merely optional, mandatory and ‘OR’ features [2]) and cases of
feature interaction, which occur when a feature interacts struc-
turally with another feature by modifying its source code [14].
This eliminates some threats to the external validity of our pre-
vious study. Besides a static evaluation by means of metrics,
it is important to conduct a dynamic evaluation. Thus, we pro-
vide evidence that the feature code’s execution behaviour does
not change when using different idioms. To do so, we use the
SafeRefactor tool [15] to generate a test suite for each flexible
feature-binding implementation with each idiom. This is useful
for detecting changes to the feature-code execution behaviour
between implementations of flexible feature binding. In this
manner, we can detect whether a feature code execution—
which presents a flexible binding time implemented with one
of the idioms—differs from the same feature code presenting a
flexible binding time implemented with another idiom. More-
over, previous results [13] have led us to suspect that assessing
the idioms by means of metrics at the level of operations (i.e.
methods) will supplement and reinforce existing evidence
concerning their advantages and drawbacks. Thus, to assess
our idioms in a more comprehensive way, we considered two
additional metrics in this article, allowing us to investigate
code scattering (Degree of Scattering across Operations [16])
and tangling (Degree of Tangling within Operations [16]) at
the level of operations (beyond the package and class levels).
This will help us to better understand and explain differences
between the idioms. In fact, some idioms are subject to a sim-
ilar degree of scattering at the component level (i.e. classes or

SEcTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 59 No. 1, 2016

ASSESSING IDIOMS FOR A FLEXIBLE FEATURE BINDING TIME 3

aspects), whereas they exude a different degree of scattering
at the level of operations. Moreover, to favour the replication
of our work, we also provide additional information about the
idioms [17].

We structured the remainder of this article as follows. In
Section 2, we present the motivation for our work, detailing
Edicts’ problems. Section 3 introduces the three AOP-based
idioms designed to mitigate these problems. In Section 4, we
discuss how to apply an idiom to provide flexible feature bind-
ing in a scenario where features interact, and we show that these
interactions are not harmful in that context. Following that,
Section 5 presents the study settings and the selected appli-
cations. We also introduce the approach used to perform our
evaluation and the assessment procedures we followed. Subse-
quently, Section 6 presents the evaluation results for Edicts and
our three idioms regarding code cloning, scattering, tangling,
size and feature behaviour. Finally, the remaining sections
discuss threats to validity, related work, and conclusions.

2. MOTIVATION

In this section, we provide a brief introduction to Edicts [8].
More pertinently, we show the problems faced when applying
this idiom, such as code cloning, scattering, and tangling.

As mentioned in the previous section, to implement a flex-
ible binding time, we can use the Edicts idiom, which makes
it possible to choose between feature binding when compiling
(i.e. static binding) or during runtime (i.e. dynamic binding).
The basic idea is to extract the feature implementation into
Aspect] [9] aspects. The programmer applies the Edicts idiom
using separate aspects for static and dynamic binding, as illus-
trated via the Unified Modelling Language (UML) in Fig. 1.
The AbstractAspect contains concrete pointcuts that
allow us to select join points in the base code where we should
add feature behaviour when it is activated.

To implement the feature code, we use intertypes and pieces
of advice. The intertypes represent structural changes that are

AbstractAspect

pointcuts ()
intertypes ()

T

StaticBinding DynamicBinding

advice () advice ()

FIGURE 1. Structure of Edicts [8].

necessary for a feature implementation that we do not need to
deactivate because they are called only from within the feature
implementation. Thus, the code is not executed when the feature
is deactivated. Because we do not need to deactivate these decla-
rations, we implement them in the AbstractAspect, avoid-
ing feature code duplication across the concrete sub-aspects.

On the other hand, we implement the pieces of advice
in two concrete sub-aspects. The StaticBinding and
the DynamicBinding sub-aspects implement static and
dynamic binding times, respectively. They differ because the
DynamicBinding aspect implements a driver mechanism.
This mechanism is used for dynamic deactivation of the fea-
ture. This can range from simple user-interface prompts to
complex sensors that automatically determine whether a par-
ticular feature should be activated [18]. Thus, this mechanism
allows features to be activated or deactivated at any time during
execution or link time. In our case, the driver mechanism reads
a property value from a properties file. For instance, to dynam-
ically activate a given feature, we set featurename=true
in the properties file. We do so for simplicity, because the com-
plexity involved in providing information for feature activation
is beyond of the scope of this article.

The structure in Fig. 1 shows only a single abstract aspect.
We can apply this structure for each aspect defined in fea-
ture implementation. For instance, if a feature code is scat-
tered across three aspects, we should abstract these three
aspects and implement static and dynamic sub-aspects for
each one.

Despite separating feature code and supporting a flexible
binding time, Edicts might suffer from a number of issues,
including code cloning, which is the presence of superfluous
copies of the code, scattering, that is, code associated to a par-
ticular concern that appears in a number of the programme
elements, and tangling, which is code associated to differ-
ent concerns that nonetheless appears in the same program
element.

To illustrate these problems, consider the Checksum optional
feature from our BerkeleyDB product line. BerkeleyDB is an
open-source database written in Java. The Checksum feature
implementation detects data corruption when writing or read-
ing a database page. Following Edicts’ structure (Fig. 1), we
have concrete pointcuts and intertypes in abstract aspects, and
advice declarations in concrete sub-aspects. However, this
design may lead to code cloning because we need to duplicate
the pieces of advice between the concrete sub-aspects to imple-
ment a static and dynamic binding time. For the Checksum
feature, 17 pieces of advice would require duplication. Listing 1
and 2 show a portion of the cloned code. The only difference
appears in Lines 4, 9, 13 and 15 from Listing 2. These lines
implement the aforementioned driver mechanism. Hence, the
code between Lines 4 and 9, and 13 and 15 from Listing 2 is
executed only if the driver activates the feature, which can be
based on a user decision, for example. For simplicity, we have
not shown the ChecksumAbstract implementation, which

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 59 No. 1, 2016

4 R. ANDRADE et al.

declares the concrete pointcuts and intertypes related to the
Checksum feature and referenced by the concrete sub-aspects.

In fact, applying Edicts to our selected features requires
cloning each piece of advice between the concrete sub-aspects
of 18 features, resulting in 177 pieces of cloned advice in our
studies. Whereas it is not always the case that code cloning
is harmful [19], in this situation it is clear that duplications
will complicate code maintenance and evolution [20, 21]. We
provide further details in Section 6.1.

Listing 1. Checksum static binding.

1| aspect ChecksumStatic extends ChecksumAbstract {
21 ...

3| after(LogManager Im) : readHeader(lm) {
4 if (Ilm.doChecksumOnRead) ({

5 validator = new ChecksumValidator ();
6

7 }

8}

9| after(FileReader fr)

10| : lastFileReaderConstructor (fr) {

11 fr.anticipateChecksumErrors = true;

12| }

13

14|}

Listing 2. Checksum dynamic binding.

1| aspect ChecksumDynamic extends ChecksumAbstract {
20 ...

3| after (LogManager Im) : readHeader(lm) {
4 if (driver.isActivated ("checksum")) {
5 if (Im.doChecksumOnRead) {

6 validator = new ChecksumValidator ();
7
8

.
9 '}

10 }

11 after (FileReader fr)

12| : lastFileReaderConstructor(fr) f{

13 if (driver.isActivated("checksum")) {
14 fr.anticipateChecksumErrors = true;

15 }
16| }

" }..,

In addition to cloning, the code in Listing 2 is not restricted
to feature implementation. It is tangled with the code from the
aforementioned driver mechanism. There is no separation of
the driver and feature concerns, and this can lead to increased
complexity in terms of any addition, removal or modifications
to the driver code [22]. For example, we may need to change
the driver mechanism owing to the configuration of a new envi-
ronment where the application is running, such as one with
less memory resources. In such a scenario, we must add a new
driver condition into each piece of advice. Moreover, the situa-
tion is exacerbated when applying Edicts to large features that
require multiple advice declarations, because this mechanism
code is tangled with a feature implementation for each piece
of advice. Even if we use an interface to reference the driver
within the pieces of advice, the problem persists because these
interfaces may vary as well. When applying Edicts, we use
aspects to implement the feature code, although we do not use
aspects to implement the driver mechanism code.

Furthermore, there are also issues to introducing the driver
mechanism. This happens because if statements like the one
in Lines 4 and 13 (in Listing 2) are scattered and tangled
throughout the advice in order to support a dynamic binding
time. Such code scattering is error-prone, because forgetting
an if statement may give raise to runtime exceptions in the
application, such asaNullPointerException. Changing
the driver mechanism is also time consuming because we have
to alter the driver code within each piece of advice.

The cloning issue can be mitigated by writing the feature
code as methods in a separate aspect or class, one that is not a
part of the application’s logic. Indeed, we could decrease code
cloning by duplicating only advice declarations and calling
these methods in the advice. Thus, the cloning problem can
be alleviated but not eliminated. Furthermore, this solution
will often fail, because Aspect] does not support proceed
calls outside the advice. Thus, it cannot be called from within
the methods in a separate aspect. Moreover, we cannot pass
arguments through these absent proceed calls, potentially
leading to inconsistent object states. For instance, if we adopt
this method to alter an object that is used in the base code, we
would lose its new state. If we create a separate class, instead
of an aspect, to implement the aforementioned methods, we
ultimately worsen the problem, because classes do not support
privileged access to non-public members, so we would
have to change the visibility of non-public methods called
within the advice body.

Furthermore, this approach to mitigating the cloning issue
comes at the cost of increased code scattering, because it uses an
additional component that contains feature code. For example,
feature code would be scattered in 26 new aspects considering
the 18 features we use in this work. Likewise, the Checksum
feature implementation would need four aspects instead of
three. The feature code is even more scattered when its imple-
mentation uses more aspects. Nevertheless, the tangling would
remain the same, because the i f statements (in Lines 4 and 13
from Listing 2) would still be implemented in the same way,
insofar we would only extract feature code.

These problems are mostly related to the design of Edicts
and its use of Aspect]. They are more evident when imple-
menting dynamic feature binding, owing to the inclusion of a
driver, which increases the difficulty of implementation, while
allowing for dynamic product lines and late-feature composi-
tions. These problems are detrimental in terms of code reuse,
maintenance and understanding. Therefore, we propose three
idioms to address Edicts’ shortcomings in the next section.

3. FLEXIBLE BINDING TIME IDIOMS

In this section, we describe our idioms to provide flexible bind-
ing time for features with the aim of mitigating the discussed
problems with Edicts. In Section 3.1, we introduce the Pointcut
Redefinition idiom. It avoids cloning pieces of advice as well as

SEcTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 59 No. 1, 2016

ASSESSING IDIOMS FOR A FLEXIBLE FEATURE BINDING TIME 5

reduces feature and driver code tangling and scattering. How-
ever, this idiom may increase the implementation size because it
redefines the pointcuts related to the feature. Hence, we describe
the Layered Aspects idiom in Section 3.2. It also addresses the
discussed problems with Edicts, but the implementation size
and the driver scattering are smaller. Additionally, we intro-
duce the Flexible Deployment idiom in Section 3.3 to evaluate
an idiom which is not based on Aspect]. Unlike the others, this
idiom relies on CaesarJ [23], which allows an improvement
regarding the discussed problems, but on the other hand, it does
not work in some cases that we describe in Section 6.9.

For all the three idioms, we adopt a project build strategy. The
structure of these idioms introduce at least one aspect for fea-
ture code and two more aspects for static and dynamic binding.
In this context, if a developer wants to provide static binding,
she must include the aspect that contains feature code and the
other that implements static binding in the project build. On the
other hand, if she wants to provide dynamic binding, she must
add to the project build the aspect that contains feature code and
the other that contains dynamic binding implementation. Fur-
thermore, the aspects that implement static and dynamic bind-
ing do not coexist in a single project build. We walk through the
details in the following sections.

3.1. Pointcut Redefinition

The Pointcut Redefinition idiom uses inheritance of Aspect]
aspects and redefinition of pointcuts to provide binding time
flexibility. Essentially, we extract the feature code into an
abstract aspect. To implement static binding, we define an
empty concrete subaspect to permit feature code instantiation
by inheriting the abstract aspect. This is necessary due to the
Aspect] limitation, in which an aspect can inherit from another
one only if the latter is abstract [24]. By compiling the appli-
cation with this concrete subaspect, we activate all intertypes
and advice declarations, so the application execution will run
the feature code. On the other hand, if we do not compile this
concrete subaspect, the application execution will not run the
feature code. For dynamic binding, we define another concrete
subaspect that redefines the pointcuts from the abstract aspect
restricting them with the driver mechanism, that is, the new
pointcuts we define in this aspect. In this way, when compiling
the application with this concrete subaspect, we are able to
dynamically decide whether the feature code is executed. In
what follows, we provide details about this idiom.

3.1.1. Design
Pointcut Redefinition is implemented using Aspect] aspects. We
define an abstract aspect, which may contain advice, pointcuts,
and intertypes related to the feature code. Figure 2 illustrates an
overview of the Pointcut Redefinition’s structure.

This idiom provides static binding by an empty concrete
subaspect to allow the AbstractAspect instantiation and

AbstractAspect

pointcut ()
advice ()
intertype()

[P

StaticBinding DynamicBinding

pointcut () && driver()

FIGURE 2. The structure of Pointcut Redefinition.

the feature code execution. For dynamic binding, we rede-
fine the AbstractAspect concrete pointcuts and associate
them with the driver code in the DynamicBinding aspect.
The driver mechanism (or a set of mechanisms) is responsible
for providing information about whether a feature should be
executed at runtime. In this way, the pointcuts defined in the
AbstractAspect intercept the corresponding join points
only if the driver activates the feature execution. Moreover,
static and dynamic binding time do not coexist at the same
product. We include only the StaticBinding aspect or
the DynamicBinding aspect in the compilation with the
AbstractAspect. Therefore, we provide three different
variability possibilities: feature dynamically bound or unbound,
feature statically bound and feature statically unbound. This
also applies to our idiom in Section 3.2.

The discussed structure of Pointcut Redefinition avoids
cloning advice code since there is no need to duplicate pieces
of advice with feature code between the concrete subaspects
because they are in the abstract aspect. Moreover, it solves
the tangling between driver and feature code because the
driver mechanism is implemented in a separate subaspect
(DynamicBinding). There is no feature code in the con-
crete subaspects and no driver code in the abstract aspect, so
they are not scattered between the three aspects. However, the
redefinition of pointcuts may increase the idiom’s implemen-
tation size when several pointcuts are present, since each one
of these pointcuts are redefined, which duplicates its size. This
increase could be tiny comparing with the application code
size, although it could be significant when comparing with the
size of other idioms. This also leads to driver-code scattering in
an operation level, since several pointcuts are associated with
driver code.

3.1.2. Example

To explain the Pointcut Redefinition idiom more clearly, we
use the same example from Section 2, the Checksum optional
feature.

Feature implementation. The abstract aspect contains intertype
and advice declarations as well as the pointcuts related to the

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 59 No. 1, 2016

6 R. ANDRADE et al.

Checksum feature code. Listing 3 shows a simplified abstract
aspect that implements the aforementioned elements. Lines 3
and 6 define pointcuts that match join points where the feature
code should be executed. The pieces of advice defined between
Lines 10 and 20, contain feature code that should be exe-
cuted in the join points matched by those pointcuts. Moreover,
Lines 22-24 define an intertype declaration that introduces
the validateChecksum method in the FileReader
class. In contrast to the code in the pieces of advice, the code
of this method should not be related to a given join point, the
own method is referenced by another member in the feature
implementation, therefore we use intertype declaration.

Listing 3. ChecksumAbstract.

abstract aspect ChecksumAbstract {

pointcut readHeader ()
call (void EntryHeader.readHeader ());

pointcut addPrevOffset(int entrySize)
: execution(ByteBuffer LogManager.addPrevOffset())
&& args(entrySize);

10| after () throws DatabaseException :
11 if (doChecksumOnRead) {
12 validator = new ChecksumValidator ();

readHeader () {

I
15 }

17| ByteBuffer around(int entrySize)

18| : addPrevOffset(entrySize) {
19 return proceed(entrySize);
20| }

22| void FileReader.validateChecksum () {

>)...
25|}

To avoid cloning the pieces of advice, we implement them
in the abstract aspect differently from Edicts. We may have as
many aspects as needed to extract code related to the feature, this
is an engineering decision. Nevertheless, we apply the structure
illustrated in Fig. 2 for each created aspect.

Implementing static binding time. As mentioned in Section
3.1.1, we create an empty concrete subaspect inheriting the
ChecksumAbstract aspect to allow its instantiation.
Making the ChecksumAbstract aspect concrete to avoid
this empty aspect would not be possible because the Checksum
Dynamic aspect needs to extend ChecksumAbstract in
order to implement the dynamic binding time, since Aspect]
aspects can only be inherited if they are abstract [24].

To statically activate the feature execution, we include the
ChecksumAbstract and ChecksumStatic aspects in
the project build. On the other hand, to statically deactivate the
feature execution, we do not include any of these aspects.
Implementing dynamic binding time. Now we are ready to
define the aspect responsible for dynamic binding time. Lines
3 and 4 of Listing 4 show the driver implementation. It uses the
Aspect] i £ pointcut, which matches each join point where the
boolean expression evaluates to t rue. In this case, the boolean

expression checks if the checksum property corresponds to
true or false in aproperties file. If this property’s value cor-
responds to true, the feature is activated and its code should
be executed. In Lines 5-8, we redefine the pointcuts defined in
ChecksumAbstract and associate the driver mechanism.
Thus, the driver controls whether the pointcuts are dynamically
applied. If the feature execution is activated, the pointcuts are
applied and consequently the code within the pieces of advice
is executed. On the other hand, if the feature execution is deac-
tivated, the pointcuts are not applied and the feature code is not
executed.

Listing 4. ChecksumDynamic.

aspect ChecksumDynamic extends ChecksumAbstract {

pointcut driver ():
if (new Driver().isActivated ("checksum"));

pointcut readHeader ()
: ChecksumAbstract.readHeader () && driver ();

pointcut addPrevOffset(int entrySize)

: ChecksumAbstract. addPrevOffset(entrySize)
&& driver ();

}

P = OO0 W —

To observe the Pointcut Redefinition disadvantages, notice
that when we define several pointcuts, the dynamic binding
implementation may increase its size because we redefine all
pointcuts. Additionally, we scatter the driver throughout the
redefined pointcuts, as shown in Lines 3, 4, 7 and 11 of List-
ing 4. To mitigate these problems, we introduce the Layered
Aspects idiom.

3.2. Layered Aspects

Now we propose the Layered Aspects idiom to implement
flexible binding time for features. Similarly to Pointcut Redef-
inition, the basic idea of Layered Aspects is to implement
feature code in an abstract aspect and two concrete subaspects
exclusively to implement static and dynamic binding time. For
the static binding time, we compile an empty concrete sub-
aspect which inherits the feature code from the abstract aspect
and allows its instantiation equally to the Pointcut Redefi-
nition idiom and due to the same Aspect] limitation, which
only allows aspect inheritance from an abstract aspect. For the
dynamic binding time, we compile another concrete subaspect,
which matches the execution of the pieces of advice that imple-
ment feature code defined in the abstract aspect to dynamically
decide whether the feature code is executed. We implement this
carefully using the adviceexecution pointcut provided by
Aspect], which matches these advice execution join points and
allows the prosecution of the feature code execution or not. We
adopt the Layered Aspects name because there is one aspect
inheriting from another, or one affecting another through the
adviceexecution pointcut. In the following, we show

SEcTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 59 No. 1, 2016

ASSESSING IDIOMS FOR A FLEXIBLE FEATURE BINDING TIME 7

this idiom’s design and how it tries to address the problems of
Edicts and Pointcut Redefinition.

3.2.1. Design

Similarly to Pointcut Redefinition, we implement the fea-
ture code in an abstract aspect. This aspect may contain
pieces of advice, pointcuts and intertype declarations asso-
ciated with the feature code. Then, we implement static and
dynamic binding time within two concrete subaspects inherit-
ing the abstract one, as illustrated in Fig. 3. An empty concrete
aspect (StaticBinding) is necessary in the compilation
to allow the AbstractAspect instantiation when a static
feature binding occurs. For dynamic binding of features, we
compile the DynamicBinding aspect, which implements
code for dealing with different kinds of advice defined in
AbstractAspect.

For before and after advice, the adviceexecution
pointcut matches their join points and only proceeds their exe-
cution if the feature is activated.

For around advice, the adviceexecution point-
cut does not work because when the driver states the feature
deactivation, we must restore the base code overridden by
the around advice. Since there is no way to access the

AbstractAspect

pointcut ()
advice ()
intertype ()

Lll

IStatchindlngl DynamicBinding

adviceexecution() && driver()
pointcut () && driver()

FIGURE 3. The structure of Layered Aspects.

proceed () join point of the advice intercepted by the
adviceexecution pointcut, it is not possible to call
it in a generic way. Thus, the pieces of around advice
of the feature implementation must be deactivated one by
one. For example, Fig. 4 illustrates this explanation. Since
the advice defined in aspect A does not call proceed (),
the advice in aspect B is not executed and consequently,
System.out.print ("BaseCode") 1is not executed
either. Therefore, missing the base code execution is the rea-
son we need to deactivate pieces of around advice one by
one. Hence, we use aspect inheritance to redefine the point-
cuts related to around advice declarations and associate
them with the driver in the DynamicBinding aspect. In
this way, DynamicBinding contains redefinitions of point-
cuts that are related to around advice, similarly to Pointcut
Redefinition. Thereby, we compile the application with the
DynamicBinding aspect to provide dynamic binding time
for features.

Furthermore, one may argue why we deny the driver ()
and do not call proceed () within the advice defined in aspect
A. Actually, if we do that, the feature code would always be
executed. If the driver () was evaluated to true, the feature
code would normally be executed. However, if the driver ()
was evaluated to false, then the adviceexecution point-
cut would not intercept any piece of advice, so the feature code
would be executed too.

The aforementioned structure of Layered Aspects avoids
feature code cloning, tangling and scattering for the same rea-
sons Pointcut Redefinition does. Layered Aspects does not
duplicate advice with feature code between StaticBinding
and DynamicBinding, since these pieces of advice are
defined only in AbstractAspect. Additionally, it does
not tangle driver and feature code because we implement the
driver mechanism only in DynamicBinding, which does not
contain feature code. Furthermore, the feature code is not scat-
tered between the concrete subaspects because we implement
it solely in AbstractAspect. However, Layered Aspects
may increase its implementation size when several around
advice are present due to the discussed adviceexecution

aspect A {

Object around() : adviceexecution() && within(B) && !driver() {

return null;

}

aspect B {
int around() : execution(int C.m()) {
return proceed();

class C{
int m() {
System.out.printIn("BaseCode");
return O;
}
}

FIGURE 4. Around advice limitation.

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 59 No. 1, 2016

8 R. ANDRADE et al.

pointcut. In the following, we provide more details about
Layered Aspects.

3.2.2. Example

To better explain Layered Aspects, consider the Checksum
feature introduced in Section 2. We show how to apply flexi-
ble binding time for this feature and how this idiom addresses
the Edicts shortcomings. We go straight to the dynamic bind-
ing time explanation because the feature and static binding
time implementations are identical to the one presented in
Section 3.1.2. The difference of Layered Aspects consists of
implementing the dynamic binding time, as follows.
Implementing dynamic binding time. Now we show how Lay-
ered Aspects allows dynamic feature activation. Listing 5
shows how we implement dynamic binding of features. Lines
3 and 4 define the driver, which is a pointcut that checks if
the checksum property corresponds to true or false in
a property file, equally to the driver defined in Lines 3 and
4 of Listing 4. The feature code is executed depending on
the evaluation of this conditional. However, as mentioned in
Section 3.1.2, the driver could be differently implemented.
Additionally, for dynamic feature binding, Line 9 implements
the adviceexecution pointcut to deal with before and
after advice. If the driver () condition corresponds to
false, the feature is deactivated, so this pointcut intercepts
the pieces of advice defined in the ChecksumAbstract
aspect, but the other advice defined in Lines 9-13 does not
call the proceed () join point, so the feature code is not exe-
cuted. On the other hand, if the driver () condition is true,
the feature is activated, so this pointcut does not intercept any
advice declaration, thus the feature code is executed.

In this context, we avoid infinite recursion [25] when
using adviceexecution because we specify which
aspect is advised by this pointcut in Line 10. Therefore, the
ChecksumDynamic aspect cannot advise itself. Moreover,
Lines 6 and 7 redefine the addPrevOffset pointcut, which
is defined in the ChecksumAbstract aspect in order to
associate it with the driver because this pointcut is related to
an around advice. As explained in Section 3.2.1, such type
of advice is handled separately, it is deactivated one by one.
Therefore, we implement the dynamic binding following the
Pointcut Redefinition structure for around advice.

Listing 5. ChecksumDynamic.

1| aspect ChecksumDynamic extends ChecksumAbstract {
20 ...

3| pointcut driver ()

41 : if (new Driver ().isActivated ("checksum"));

5

6| pointcut addPrevOffset ()

7| : ChecksumAbstract.addPrevOffset () && driver ();
8

9] Object around ()

10| : adviceexecution () && within(ChecksumAbstract)
11 && !driver () |

12 return null;

13 }
14|}

Furthermore, returning null in Line 12 (Listing 5) is not
harmful when the feature is deactivated because we apply
the adviceexecution pointcut only for before and
after advice, so it does not intercept around advice.
Therefore, when the feature is deactivated, the new point-
cuts related to around advice are not applied and so the
adviceexecution () does not intercept the execution of
the advice defined in Lines 17-20 (Listing 3). If we remove the
null statement, we may have a compilation error, since the
adviceexecution () pointcut statically targets the pieces
of advice defined in ChecksumAbstract that return an
Object or a primitive type.

Although Layered Aspects reduces some issues, this idiom
could scatter driver code when several around advice are
defined because we redefine the pointcuts related to it, as
discussed above. The Pointcut Redefinition idiom presents
the same deficiency, however, it redefines all the pointcuts
whereas Layered Aspects redefines only the pointcuts related
to around advice. Hence, Layered Aspects design does not
reduce the implementation size comparing with Pointcut Redef-
inition in such cases. To handle these issues, we present next
the Flexible Deployment idiom.

3.3. Flexible Deployment

The Flexible Deployment idiom uses dynamic deployment of
aspects provided by CaesarJ [23] to allow feature binding time
flexibility. CaesarJ is an aspect-oriented language that extends
Java with support for reusability by means of aspect-oriented
constructs, such as pointcut and advice, as well as object-
oriented modularization mechanisms, like Caesar] classes.
Furthermore, CaesarJ supports dynamic deployment of classes
and advanced object-oriented modularization mechanisms.

We select this language to provide an additional idiom
without introducing some of Aspect] limitations, such as the
adviceexecution limitation, explained in Section 3.2.
Caesar] supports a dynamic aspect deployment mechanism
to allow control over scope [26], which we use to implement
dynamic flexible binding for features. Furthermore, Aspect]
reuse mechanisms are limited to abstract aspects and aspect
inheritance. In particular, CaesarJ promises to overcome these
limitations. For example, Caesar] supports the technique of
coding interfaces, virtual types and mixin composition [26]. On
the other hand, other aspect-oriented languages (e.g. ABC [27])
present the same Aspect] reuse limitations.

The idea to provide flexible binding time is to define a Cae-
sar] class, which supports the definition of aspect-oriented
constructs, to implement feature code and two additional Cae-
sar] classes to implement static and dynamic binding. For
static binding, we define a statically deployed Caesar] class
that inherits another CaesarJ class containing the feature code.
For dynamic binding, a deployed Caesar] class implements
the driver mechanism. It activates the feature by dynamically
deploying the CaesarJ class that contains the feature code and

SEcTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 59 No. 1, 2016

ASSESSING IDIOMS FOR A FLEXIBLE FEATURE BINDING TIME 9

FeatureCaesarJdClass -
DynamicBinding
pointcut ()
A pointcut ()
advice () <~-—-‘ :
advice()
cclass ()

StaticBinding

FIGURE 5. The structure of Flexible Deployment.

consequently allowing its execution. We provide more details
about this idiom in the following sections.

3.3.1. Design

Flexible Deployment is implemented using Caesar] classes. We
define a CaesarJ class to implement a given feature. It may con-
tain pointcuts, advice and wrapper classes associated with the
feature implementation. These wrapper classes, which are pro-
vided by CaesarJ, dynamically extends other classes. They can
introduce new fields and methods [23]. Unlike Aspect] inter-
type declarations, these wrapper classes do not introduce fea-
ture code in base code classes. Figure 5 shows the structure of
Flexible Deployment.

Furthermore, we implement static binding by defining an
empty deployed CaesarJ class (StaticBinding) that inher-
its from FeatureCaesarJClass. Thereby, when both
Caesar] classes are present in a build, the feature is statically
activated. For dynamic binding, we define a separate CaesarJ
class (DynamicBinding) which contains the driver mecha-
nism implemented as a pointcut and an advice. In Section 3.3.2,
we provide more details.

This idiom reduces code cloning, tangling, scattering and
size. We implement feature code in a separate CaesarJ class.
Therefore, there is no cloning of pieces of advice and there is no
feature code scattering throughout the classes either. Since we
implement the driver mechanism in a separate CaesarJ class,
the driver code is not tangled with feature code. Moreover,
the idiom implementation size does not increase when several
pointcuts are present as Pointcut Redefinition does.

3.3.2. Example

Now we use the Checksum feature to describe how to implement
flexible binding time using the Flexible Deployment idiom.
Feature implementation. The Caesar] class that contains fea-
ture code may define pointcuts, advice and wrapper classes,
as illustrated in Listing 6. Differently from Aspect], CaesarJ]
does not support intertypes, so we define wrapper classes
(Lines 23-28) in ChecksumCaesarJClass instead. The
FileReaderCaesarJ wrapper class dynamically extends
the FileReader class. It defines the validateChecksum
method, which is part of the feature implementation (Lines
25-27). The Lines 3-8 define pointcuts that match certain join

points in the base code where the feature code should be exe-
cuted. Lines 10-21 define pieces of advice that contains this
feature code.

Listing 6. ChecksumCaesarJClass

cclass ChecksumCaesarJClass {

1

20 ...

3| pointcut readHeader ()

4| : call(veoid EntryHeader.readHeader ());

5

6| pointcut addPrevOffset(int entrySize)

7| : execution(ByteBuffer LogManager.addPrevOffset())
8| && args(entrySize);

9

10| after () throws DatabaseException : readHeader () ({
11 if (doChecksumOnRead) {

12 validator = new ChecksumValidator ();

. }.H
15 }

17| ByteBuffer around(int entrySize)
18| : addPrevOffset(entrySize) {

20 return proceed(entrySize);
21}

23| cclass FileReaderCaesar]J wraps FileReader {
25 void validateChecksum () {
27 }

28])
291}

Implementing static binding time. In CaesarJ, instantiation does
not automatically activate an aspect. It must be deployed in
order to activate its pointcuts and advice [23]. This deployment
may be done statically by introducing the key word deployed
before the CaesarJ class declaration. In this context, for the
static binding time, we define a deployed Caesar] subclass
extending ChecksumCaesarJClass, as illustrated in List-
ing 7. Therefore, we activate the feature code execution by
including both CaesarJ classes in the project build. On the other
hand, to deactivate feature code execution, we do not include
any of these CaesarJ classes.

Listing 7. ChecksumStatic.

deployed cclass ChecksumStatic
extends ChecksumCaesarJClass {

}

W —

Implementing dynamic binding time. Now we describe how
the Flexible Deployment idiom allows dynamic feature acti-
vation. Listing 8 shows the driver mechanism implementation
in a deployed Caesar] class. In this case, we define a point-
cut that intercepts the system main method execution in Lines
2 and 3. This allows the advice defined in Line 4 to dynam-
ically deploy the Caesar] class that contains feature code
(ChecksumCaesarJClass) before the main method exe-
cution. Thereby, the feature code is executed depending on
the driver mechanism. Furthermore, this driver mechanism
is implemented according to the application requirements.
Thus, it is not necessarily implemented as in Listing 8. As we

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 59 No. 1, 2016

10 R. ANDRADE et al.

mentioned in Section 3.1.2, it could vary from simple GUIs to
complex sensors.

Indeed, Flexible Deployment implementation does not clone
or scatter feature code because we do not need to duplicate it
in the classes that implement static and dynamic binding time,
so we implement feature code only in one class. Moreover, this
idiom does not tangle feature and driver code since we define a
separate class to implement the driver mechanism. Finally, Flex-
ible Deployment reduces the implementation size comparing to
the other idioms because its size does not vary due to certain
advice, as in Layered Aspects.

Listing 8. ChecksumDynamic.

deployed cclass ChecksumDynamic {

pointcut pc_jarmain ()

: execution(x JarMain.main (..));

before () : pc_jarmain() {

if (new Driver ().isActivated ("checksum")) {
deploy new ChecksumCaesarJClass ();

}

}

NN (e SRV RN NS O

}

However, Caesar]J does no support some Aspect] constructs,
such as declare parents [23]. Because of this disad-
vantage, we do not apply the Flexible Deployment idiom to
provide flexible binding time for four features out of our 18
selected features. The flexible binding time implementation for
these four features with the other idioms needs the declare
parents construct, so we would need to do several changes
to implement flexible binding time with Flexible Deployment,
which could introduce bias in the evaluation. This is the reason
why we do not show the metric results, in Section 6 for the fea-
tures NextPiece-Desktop, NextPiece-Mobile, Record-Desktop
and Record-Mobile concerning the Flexible Deployment idiom.
We provide further details in Section 6.9.

At last, we provide a summary of the key discriminators
between the four idioms presented so far in Table 1.

4. FEATURE INTERACTION

So far, we explained how to implement flexible binding time
without considering features that interact. In this section, we
explain how to apply Edicts into a feature interaction scenario.

Moreover, our idioms might be applied in an analogous way.
Thus, we omit their implementation in this section. However,
we provide the corresponding source code [17].

A feature interaction occurs when one or more features
modify or influence other features [28, 29]. As Liu et al. state,
there are different ways in which feature interact [14], such as
behavioural or structural interaction. For this work, we focus on
interactions that are static and structural, that is, how the flex-
ible binding time implementation for a feature may influence
others when activating or deactivating this feature. Moreover,
considering feature interactions is important because they can
be damaging to application development and user expecta-
tions [30]. Besides that, the concepts of feature interaction used
in this work are compatible with Sobering’s [31].

In such feature interaction scenarios, we may need to apply
flexible binding time as well. Therefore, we explain how to deal
with feature interaction when applying the idioms discussed
before.

4.1. Example of feature interaction

To better explain flexible binding time within feature interac-
tion context, consider the NextPiece optional feature of our
Tetris product line, which is our only case of interaction. Basi-
cally, this feature execution shows the next piece which is about
to drop on the screen of a simple Tetris game. Moreover, we
can run this game on Mobile and Desktop environments, which
are mutually exclusive features. Thus, we need to implement
NextPiece code specifically for each environment mainly con-
cerning the user interface, which lead to an interaction between
these features. We choose the Tetris application because its
features interact and it is small and easy to understand. Further,
we provide more details about this application in Section 5.1.1.

To exemplify feature interaction in Tetris, Table 2 illus-
trates a configuration knowledge of the feature interaction
scenario. For example, if the NextPiece and Mobile fea-
tures should be executed, we must include Mobile.aj,
NextPieceAbstract.aj, NextPieceStatic.aj,
MobileNextPieceAbstract.aj and DesktopNext
PieceDynamic.aj aspects in the project build. Note
that the environment where we can execute the NextPiece
feature may vary, that is, we can run this feature on Mobile

TABLE 1. Summary of the idioms.

Edicts Pointcut Redefinition Layered Aspects Flexible Deployment
Language Aspect] Aspect] Aspect] CaesarJ
adviceexecution No No Yes No
Redefinition of pointcuts No Yes Depends No
Duplication of aspects Yes No No No
Feature and driver code tangling Yes No Depends No
Mobile and desktop platforms Yes Yes Yes No

SEcTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 59 No. 1, 2016

ASSESSING IDIOMS FOR A FLEXIBLE FEATURE BINDING TIME 11

TABLE 2. Tetris configuration knowledge and binding mode.

Feature expression Binding mode Functionality Components
Mobile Static Provides support to run on mobile Mobile.aj
environment
Desktop Static Provides support to run on desktop Desktop.aj
environment
NextPiece Static Shows the next piece to drop on the NextPieceAbstract.aj, NextPieceStatic.aj,

screen
NextPiece A Mobile Static

environment

NextPiece A Desktop ~ Dynamic

environment

Provides support to see the next
piece when running on mobile

Provides support to see the next
piece when running on desktop

and NextPieceDynamic.aj
MobileNextPiece Abstract.aj and
MobileNextPieceStatic.aj

DesktopNextPieceAbstract.aj and
DesktopNextPieceDynamic.aj

FIGURE 6. The structure of Edicts with feature interaction.

or Desktop environments. In this way, we observe the fea-
ture interaction scenario, since we need to define addi-
tional aspects (MobileNextPieceAbstract.aj and
MobileNextPieceStatic.aj for Mobile,and Desktop
NextPieceAbstract.aj and DesktopNextPiece
Dynamic.aj for Desktop) to implement part of NextPiece
code specifically to Mobile or Desktop. Furthermore, the Next-
Piece behaviour varies depending on these environments where
it is running.

4.2. Implementing flexible binding time

First, we summarize the features and the corresponding bind-
ing time we take into account in Table 2. In this example, the
mutually exclusive features Mobile and Desktop present only
static binding time, since it does not make sense to dynamically
change the environment where the application is running. How-
ever, we want to provide dynamic binding time for the NextPiece
optional feature when it is running on Desktop environment and

static binding time when it is running on Mobile environment.
This decision is based on requirements and we provide further
details in Section 5.1.1.

To explain how to apply Edicts in the context of feature inter-
action, we implement flexible binding time with this idiom for
the NextPiece feature in both Mobile and Desktop environments.
We omit the flexible binding time implementation with the other
idioms because it would be repetitive and the application of their
concepts is analogous to the application of Edicts concepts.

In Fig. 6, we illustrate an overview of Edicts structure
in the context of feature interaction. Following the con-
cepts of this idiom, the NextPieceAbstract aspect
contains pointcuts and intertype declarations. Additionally,
NextPieceStatic and NextPieceDynamic implement
static and dynamic binding time, respectively. These three
aspects concern exclusively to the NextPiece feature. On the
other hand, the Mobile and Desktop aspects implement
exclusive code of Mobile and Desktop features. As men-
tioned before, we do not implement dynamic binding for these

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 59 No. 1, 2016

12 R. ANDRADE et al.

features. Moreover, the MobileNextPieceAbstract,
MobileNextPieceStatic, DesktopNextPiece
Abstract and Desktop- NextPieceDynamic aspects
implement static and dynamic binding for the interaction
between NextPiece, Mobile and Desktop features. To show the
implementation of Edicts, we follow the same text structure of
Section 3.
Listing 9. NextPieceBoxAbstract

abstract aspect NextPieceBoxAbstract {
NextPieceBox TetrisCanvas.nextPieceBox ;

pointcut createNextPiece(TetrisCanvas cthis, ...)
:execution (x TetrisCanvas .createNextPieceBoxHook ())
&& this(cthis) && args (...);

}

0NN B W —

Feature implementation. Differently from the explanation of
Checksum (Section 2), we now deal with three features that
interact. Therefore, by following the concepts of Editcs, we
create at least three abstract aspects for each feature. Thus,
Listing 9 contains pointcuts and intertypes corresponding
exclusively to the NextPiece feature.

The Listings 10 and 11 illustrate two aspects that implement
the Mobile and Desktop features. These aspects contain point-
cuts, intertypes and pieces of advice corresponding solely to
these features. Note that we do not have to create concrete sub-
aspects in order to implement static and dynamic binding time
because we just include one of these aspects in the project build
according to the feature that should be statically activated. This
justifies why we implement pieces of advice in these aspects.
The declare parents in Line 3 determines which class
TetrisCanvas extends, that is, Canvas for Mobile envi-
ronment or JPanel for Desktop environment. On the other
hand, the pointcuts and advice start the application for Mobile
or Desktop.

Listing 10. Mobile

aspect Mobile {

1
21 ...
3| declare parents : TetrisCanvas extends Canvas;
4

5| pointcut startApp(TetrisMidlet cthis)

6| : execution(x TetrisMidlet.startApp (..))

7| && this(cthis);

8

9

10

after (TetrisMidlet cthis)
Display . getDisplay (cthis)
11 .setCurrent(cthis.gameCanvas);
12|}

13] }

startApp (cthis) {

Listing 11. Desktop

1| aspect Desktop {

20 ...

3| declare parents : TetrisCanvas extends JPanel;
4

5| pointcut startApp(TetrisMidlet cthis)

6 execution(x TetrisMidlet.startApp (..))

7| && this(cthis);

8

9| after(TetrisMidlet cthis) startApp (cthis) {
10 cthis.setVisible (true);

11 }

12}

Last but not least, we define abstract aspects in List-
ings 12 and 13 to implement feature interaction code. First,
MobileNextPieceAbstract defines pointcuts and inter-
types related to the interaction between Mobile and NextPiece
features. Therefore, this aspect contains NextPiece feature code
to run only on the Mobile environment. We declare in Line
6 the captionFont variable by using intertype, which is
defined with type Font. Besides this intertype declaration, we
define in Line 8 the paint InfoBoxes pointcut, which uses a
Graphics object as one of its parameters. Note that we import
the objects Font and Graphics from Java Micro Edition
libraries, which is different from Java Standard Edition libraries.
On the other hand, in DesktopNextPieceAbstract
aspect, we import Font and Graphics objects from Java
Standard Edition libraries, as shown in Lines 1 and 2 of List-
ing 13. These NextPiece implementation differences between
Mobile and Desktop environments could vary from simple
imports to different use of variables or calculations of the
position of objects in the user interface.

Listing 12. MobileNextPieceAbstract

1| import javax.microedition.lcdui.Font; import
2| javax . microedition.lcdui. Graphics;

3

4| abstract aspect MobileNextPieceAbstract {

5

6| Font NextPieceBox.captionFont;

7

8| pointcut paintInfoBoxes(TetrisCanvas cthis ,
9| Graphics g)

10| : execution(x TetrisCanvas.paintInfoBoxes (..))
11| && this(cthis) && args(g):

12] }

Implementing static binding time. As we mentioned before, we
implement static feature binding for NextPiece when the Tetris
application is configured to run on Mobile environment.

Listing 13. DesktopNextPiece Abstract

1| import java.awt.Font; import java.awt.Graphics;
2

3| abstract aspect DesktopNextPieceAbstract {

4

5| Font NextPieceBox.captionFont;

6

7| pointcut paintInfoBoxes(TetrisCanvas cthis ,

8| Graphics g)

9 execution (x TetrisCanvas.paintInfoBoxes (..))
10| && this(cthis) && args(g);

11] }

Differently from the structure presented in Section 2, we
define concrete subaspects to the feature we aim at implement-
ing binding time as well as to the interaction between features.
Therefore, Listings 14 and 15 illustrate these concrete sub-
aspects. The NextPieceStatic aspect implements pieces
of advice that alter the application behaviour by changing
or adding feature functionality into the join points identi-
fied by the pointcuts defined in NextPieceAbstract,
that is, NextPiece code without interaction. Additionally, the
MobileNextPieceStatic aspect implements pieces of
advice with the same purpose of those. However, these

SEcTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 59 No. 1, 2016

ASSESSING IDIOMS FOR A FLEXIBLE FEATURE BINDING TIME 13

refers to pointcuts that are part of the interaction between
Mobile and NextPiece features. To statically bind these
two features, we need to include NextPieceAbstract,
NextPieceStatic, MobileNextPieceAbstract,
MobileNextPieceStatic and Mobile aspects in the
project build.

Listing 14. NextPieceStatic

aspect NextPieceStatic extends NextPieceAbstract {
after (TetrisCanvas cthis, ...)
. createNextPieceBoxHook (cthis , ...)

cthis .nextPieceBox = new NextPieceBox (
TetrisConstants .COLOR_BLACK,
TetrisConstants .COLOR_LIGHT _GREY,
cthis.font, ...);

OO XN R W —

Listing 15. MobileNextPieceStatic

aspect MobileNextPieceStatic
extends MobileNextPieceAbstract {

1

2

3

4| after(TetrisCanvas cthis , Graphics g)
5| : pc_paintinfoBoxes(cthis, g) {

6 if (cthis.nextPieceBox.setPieceType (
7 cthis .game. getNextPieceType ())) {

8 cthis.nextPieceBox.paint(g);

91 1}

0| 1}

1

Implementing dynamic binding time. We implement dynamic
binding for the NextPiece feature when the Tetris application is
configured to run on Desktop environment.

Analogously to static binding time implementation, we
define two aspects to implement dynamic binding of Next-
Piece feature. Listing 16 shows the implementation of dynamic
binding time for code related exclusively to the NextPiece fea-
ture whereas Listing 17 shows the implementation of dynamic
binding time for code related to the interaction between Next-
Piece and Desktop. The only difference of Listings 16 and 17
over Listings 14 and 15 is the driver implementation in Line 6.
As mentioned before, this is a mechanism to activate features
dynamically.

Listing 16. NextPieceDynamic

1| aspect NextPieceDynamic

2| extends NextPieceAbstract {

3

4| after(TetrisCanvas cthis, ...)

5| : createNextPieceBoxHook (cthis, ...) {
6 if (driverNextPiece) {

7 cthis.nextPieceBox = new NextPieceBox (
8 TetrisConstants .COLOR_BLACK,

9 TetrisConstants .COLOR_LIGHT_GREY,

10 cthis.font, ...);

T
12|)
13] }

Last but not least, even Edicts might be applied to provide
flexible binding within feature interaction scenarios. However,
we observe the same problems presented in Section 2, that is,

code cloning, scattering, and tangling. Furthermore, we show
that Pointcut Redefinition and Layered Aspects achieve better
results regarding these issues for the features where interac-
tion occurs (NextPiece-Desktop and NextPiece-Mobile) in
Sections 6.2 and 6.3.

Listing 17. DesktopNextPieceDynamic

1| aspect DesktopNextPieceDynamic

2| extends DesktopNextPieceAbstract {

3

4| after(TetrisCanvas cthis, Graphics g)
5| : pc_paintInfoBoxes(cthis, g) {

6 if (driverNextPiece) ({

7 if (cthis.nextPieceBox.setPieceType(
8 cthis.getGame (). getNextPieceType ())) {
9 cthis.nextPieceBox.paint(g);

10 }

11 }

12 }

13| }

5. STUDY SETTINGS

To evaluate the idioms showed in Sections 2 and 3, we perform
an empirical assessment focusing on code reuse, maintenance
and understanding. Therefore, we explain how we conduct our
assessment in this section.

First, we explain the selected applications discussing general
characteristics and the selected features in Section 5.1. Sec-
ondly, we discuss the Goal-Question-Metric (GQM) design [32]
in Section 5.2. To guide our evaluation, we present the goals
we aim to achieve, which consists of assessing idioms to imple-
ment flexible binding times for features regarding code reuse,
maintenance and understanding. Additionally, we present the
research questions we intend to investigate, such as which
idiom helps to reduce code cloning. Further, we outline the
metrics we use to answer these questions. Third, we explain the
assessment procedures we follow to do this work in Section 5.3.

5.1. Selected applications

This section presents the selected applications and their features
that we provide flexible binding time. We implement the four
idioms discussed for every feature presented in this section.
BerkeleyDB, which is one of our selected application, was
originally refactored by Kistner et al. [33]. Therefore, we
reviewed and refactored 10 feature implementations we select
of this application to comply with the way we implement the
other eight selected features of the other applications. One
example of this refactoring consists of separating pointcuts
from advice declarations. Leaving them together would alter the
evaluation and possibly introduce bias, such as increasing code
cloning for the Edicts idiom because by following its structure,
presented in Section 2, we would have to duplicate pointcuts
and advice instead of only pieces of advice between the con-
crete subaspects. Besides BerkeleyDB, we consider three other
applications: Tetris [34], Freemind [35] and ArgoUML [36].
They are plain object-oriented applications written in Java.

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 59 No. 1, 2016

14 R. ANDRADE et al.

We extract the code of some of their features into aspects to
create an SPL before applying the idioms. In what follows, we
provide more details about these applications.

5.1.1. Tetris

Tetris [34] is an open-source implementation in Java ME (Micro
Edition) of the well-known Tetris game. It is designed to run on
mobile environment. First, we create a product line by extract-
ing the code related to Java ME into aspects. Thus, we were able
to code and add Java SE (Standard Edition) support as well. In
this way, we can run Tetris for both platforms. Figure 7 shows
the feature model of our Tetris SPL. Note that Mobile and Desk-
top are alternative features that represent the platforms we can
run this application. Additionally, we implement flexible bind-
ing time for Record and NextPiece optional features. The circles
in Fig. 8 illustrate both features in the application. The Record
feature shows to the user what is the highest score any player has
already achieved. The second feature, named NextPiece, shows
the next piece which is about to drop on the screen. This product

Tetris Legend:
@ Mandatory
p O/ Optional
NextPiece_ Environment_ Record A Alternative

ay

Mobile Desktop

FIGURE 7. Tetris SPL feature model.
] |

score

level

tetris lines

next

hi score: 80 ‘

10-9

FIGURE 8. Tetris features.

line has about 1500 lines of code. The Record and NextPiece fea-
tures have nearly 400 lines of code within aspects and classes.
Additionally, the features represent a scenario of feature interac-
tion, as we explained in Section 4.

For the Java SE platform, we implement a dialog box to
appear in the beginning of the execution and let the user choose
what features should be activated. Thus, this dialog box rep-
resents the driver mechanism in this application. It allows
dynamic binding time for NextPiece and Record. On the other
hand, for the Java ME platform, it is desirable to avoid over-
head introduced by dynamic binding [37] due to restrictions
of performance, so we provide a simple user interface without
this dialog box to statically activate or deactivate the features.

Therefore, it is possible to generate different products:
(i) features dynamically bound for the Java SE platform and
(ii) features statically bound or (iii) unbound for the Java ME
platform. The Record and NextPiece features do not present
constraints regarding their composition. Therefore, we may
activate or deactivate them independently. Thereby, both may
be activated or deactivated, or one may be deactivated while
the other is activated, or vice versa.

5.1.2. Freemind
Freemind [35] is an open-source system used to construct dia-
grams to organize ideas by using mind maps. It is written in
Java and runs on the Java SE platform. We select this applica-
tion because it is a widely used one and presents code related
to particular functionalities scattered throughout several layers
and classes. In this context, we extracted the code of two fea-
tures to create a product line and provide flexible binding time.
Figure 9 illustrates the feature model of our resulting SPL.
The Clouds and Icons features are optional and do not present
constraints, which means they may have any combination.
Figure 10 illustrates a mind map in Freemind that organizes
information of our application. The circles represent the two fea-
tures. The Clouds optional feature (right-hand side circle) may
alert an important node from the mind map. For instance, we
use a cloud to call our attention about what platforms Tetris runs
on. The Icons optional feature decorates these nodes beside their
names. The Tetris and Freemind nodes contain icons.

Freemind

FIGURE 9. Freemind SPL feature model.

SEcTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 59 No. 1, 2016

ASSESSING IDIOMS FOR A FLEXIBLE FEATURE BINDING TIME 15

- ~1:2["‘~; 7 b:SansSerif

Two features

/

C)Q_;:100°/o v: YmEgde~s

Two features '
c ; d\ @ Tetris¢_ Runs on J2ME and J2SE
— Case studies -~ \

Written in Java Freemind V"
Runs on J2SE /

9| &

N 0>

/ S — |

_ Written in Java

FIGURE 10. Mind map constructed in Freemind.

Differently from Tetris, Clouds and Icons are crosscutting,
scattered and tangled throughout different architecture layers.
We also use several different Aspect] constructs to implement
these features. Albeit we consider these kinds of feature code
in Freemind, we also select less scattered feature code in the
other source code.

The Freemind product line has about 67 000 lines of code and
both features have ~4000 lines. For this SPL, we can generate
different products with dynamic and static feature bind or static
feature unbind.

5.1.3. ArgoUML

ArgoUML [36] is an open-source UML modelling tool writ-
ten in Java that includes support for standard UML 1.4 [38]
diagrams. We select this application because the its code is
separated into subsystems that have different responsibilities
and are organized in layers. Thus, the feature code should be
scattered within this component instead of the whole applica-
tion as in Freemind, which turns its feature code different from
the other SPLs. In this context, we create a product line by
extracting the code of two features into aspects and introducing
flexible binding time for both.

For the first feature, we focus on the notation subsystem
which defines the Notation language used in UML diagrams.
ArgoUML provides two of them: UML 1.4 and Java. This is
an OR feature, so we may have only UML 1.4, only Java or
both. We also consider the Guillemets optional feature. It is
responsible for showing the symbols “«” “»” to accommodate
the stereotypes of classes in the diagrams. Despite the simplic-
ity, the Guillemets feature code is scattered throughout many
modules of ArgoUML.

The ArgoUML product line has nearly 113 000 lines of code
and 470 of feature code. Figure 11 shows the feature model
of this product line. Note that we may have any combination
between the two selected features. Therefore, we can generate
different products with dynamic and static feature bind and
static feature unbind, equally to the Freemind product line.

5.1.4. BerkeleyDB
BerkeleyDB [39] is an open-source database written entirely
in Java. It uses the Java Environment advantages to simplify

| ArgoUML
Legend:

A o

| Guillemet_ J Notation_J

' Java uML14

FIGURE 11. ArgoUML SPL feature model.

development and redeployment, and provides simple store key/-
value pairs of arbitrary data. For this work, we use a product
line version [33], which has 38 optional or alternative features.
We select ten features to cover different characteristics, such as
crosscutting and scattered code.

Moreover, we do not consider all the 38 features because
we subjectively analysed their code and found that their code
is similar. We checked the number of pointcuts and pieces of
advice, which might influence metric results. Besides that, we
verified what kinds of advice were implemented within fea-
ture code. They may be important to determine feature code
scattering and tangling. Thus, we selected a set of features
that represents different sizes and presents different kinds of
advice. The 10 selected features represent different sizes and
crosscutting characteristics present in BerkeleyDB. Size and
crosscutting code are the main characteristics that can alter our
metric results. Since these characteristics are similar among
the other 28 features, our results presented in Section 6 would
not change or bring new insights with respect to the selected
metrics.

Table 3 explains the responsibility of each feature. The
optional features have constraints between each other. For
example, Truncate depends on Delete to delete the database
before creating a new empty one. In other words, Delete must be
present in the product when Truncate is activated. We discuss
it later in Section 6.9. Due to the quantity of features, we can
have several number of product configurations.

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 59 No. 1, 2016

16 R. ANDRADE et al.

This product line has ~32000 lines of code. All the 10
selected features sum up ~4000 lines of code. Figure 12 illus-
trates the feature model of this product line. The /0 and NIO
features are alternatives, which means that only one may be
present at a time. The other features are optional. Differently
from the other SPLs, we cannot have some combinations
of features. As aforementioned, some implementation of
features depend on other implementation of features to execute
correctly. This limits the possible products we may generate.

TABLE 3. BerkeleyDB features.

Feature Definition

Checksum Checksum read and write validation
of persistence subsystem.

Delete Deletes database.

EnvironmentLock Prevents two instances on the same
database directory.

Evictor Reduces memory consumption by
evicting non-persistent nodes
from the database tree.

INCompressor Removes delete entries and empty
nodes from the tree.

10 Classic I/O implementation.

Look ahead cache Keeps track of memory used, and
when full (over budget), the node
offsets should be queried and
removed.

Memory budget Calculates the available memory for
the database and how to apportion
it between cache and log buffers.

NIO New I/0O implementation.

Truncate Deletes the database and creates a

new one without the previous

data.

BerkeleyDB_

BTree [

DatabaseOperations ‘ MemoryBudgeri

5.2. Goal-Question-Metric

We use a GQM [32] design to drive the evaluation process. It is
the specification of a measurement system targeting a particular
set of issues and a set of rules for the interpretation of the mea-
surement data. The resulting measurement model includes the
Goal, Question and Metric. We structure it in Table 4. We try to
answer which idiom brings benefits with respect to code reuse,
maintenance and understanding. To achieve that, we consider
characteristics such as code cloning, scattering, tangling and
size. Furthermore, most metrics we choose have already been
defined and successfully used to measure quality factors in
several works [40—45]. All of these metrics are defined to be
used at the implementation level, which we focus on this work.
Cloning

(i) Pairs of Cloned Code (PCC). It measures the num-
ber of pairs of duplicated code based on tokens. To
measure this metric, we use CCFinder [46], which is a
token-based tool to detect code duplication. To be con-
sidered a pair of duplicated code, there must be at least
40 consecutive duplicated tokens, we provide further
details in Section 6.1.

Scattering

(1) Degree of Scattering across Components (DOSC).
It measures how distributed is a concern code across
components (classes or aspects). It varies from O to 1.
If DOSC is 0, then the code of a concern is in a single
component. On the other hand, if DOSC is 1, then
the code of a concern is equally divided among all
considered components [16].

(i) Degree of Scattering across Operations (DOSO).
Similarly to DOSC, DOSO measures how distributed
is a concern across methods and advice. It varies
from O to 1. If DOSO is 0, then the code of a con-
cern is in a single method or advice. On the other

Persistence_ }

| Truncate_] VFe|et7e;‘

10| N |

. O) ~ : O 2 T~
Evictm lNCompressor‘ InputAndOutput ‘EnvironmentLock_l Cleaner_ Checksum!

LookAheadCache ‘

FIGURE 12. BerkeleyDB SPL feature model.

SEcTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 59 No. 1, 2016

ASSESSING IDIOMS FOR A FLEXIBLE FEATURE BINDING TIME 17

TABLE 4. GQM to assess flexible binding time implementation.

Goal

Purpose Evaluate idioms regarding

Issue cloning, scattering, tangling,
and size of their flexible
binding time implementation

Object for features

Viewpoint from a software engineer
viewpoint

Questions and Metrics

Q1- Which idiom reduces the code duplication when implementing binding

time flexibility?

Pairs of Cloned Code PCC

Q2- Which idiom reduces the driver and feature code scattering?

Degree of Scattering across Components DOSC

Degree of Scattering across Operations DOSO

Concern Diffusion over Components CDC

Q3- Which idiom reduces the tangling between the driver and feature code?

Degree of Tangling within Components DOTC

Degree of Tangling within Operations DOTO

Q4- Which idiom reduces the lines of code and number of components?

Source Lines of Code SLOC

Vocabulary Size AVAS]

hand, if DOSO is 1, then the code of a concern is
equally divided among all considered methods and
advice [16].

(iii) Concern Diffusion over Components (CDC). Number
of components that include code related to a feature
plus the number of other components that access
them [45].

Tangling

(i) Degree of Tangling within Components (DOTC). It
measures how dedicated a component (class or aspect)
is to one or more concerns under consideration. Like
DOSC and DOSO, it varies from O to 1. If DOTC is
0, then the code of a component is totally dedicated
to one concern. On the other hand, it is 1 if the code
of a component is dedicated to all concerns under
consideration [16].

(i) Degree of Tangling within Operations (DOTO). It mea-
sures how dedicated a method or advice is to one or
more concerns under consideration. It varies from O to
1. If DOTO is 0, then the code of a method or advice is
totally dedicated to one concern. On the other hand, it
is 1 if the code of a method or advice is dedicated to all
concerns under consideration [16].

Size
(1) Source Lines of Code (SLOC). Number of source lines
of a component (e.g. classes or aspects).
(i1) Vocabulary Size (VS). Number of program components
(e.g. classes or aspects);

We use PCC in Section 6.1 to answer Question 1, as it may
indicate a design that could increase maintenance costs [47]
because a change would have to be replicated to the dupli-
cated code as well. To answer Question 2, we use CDC, DOSC
and DOSO in Section 6.2 to measure the implementation
scattering for each idiom. Thus, we measure code scattering
through different perspectives, such as number of components
in which the code is scattered, and how dedicated the code is
with respect to components or methods. To answer Question 3,
we measure the tangling between driver and feature code con-
sidering the DOTC and DOTO metrics in Section 6.3. Hence,
our evaluation considers code tangling within components and
methods. Additionally, SLOC and VS are well-known metrics
for quantifying a module size and complexity. So we answer
Question 4 measuring the size of each idiom in terms of lines
of code and number of components in Section 6.4. We provide
more details about how DOSC, DOSO, DOTC and DOTO are
defined in Appendix A. However, these details are not crucial
to understand our assessment.

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 59 No. 1, 2016

18 R. ANDRADE et al.

5.3. Assessment procedures

To obtain results for the metrics and perform our assessment, we
follow the following procedure. We detail it in five steps, which
we follow in the order presented.

(1) Application selection. In order to generalize the results
of our study to other contexts, we consider 18 features selected
from the 46 total features contained in the 4 product lines
discussed in Section 5.1.

four different applications and 18 different features.

However, we do not choose these source code arbitrarily.
First, BerkeleyDB has been minutely studied before [33].
Thus, we could check what code changes we should make in
an existing source code (including aspects) in order to apply
flexible feature binding. Furthermore, we select Tetris because
itis a simple and easy to understand code as well as it includes
feature interaction and it runs over different platforms, which
makes it diverse from the others. In contrast to Tetris, Freemind
and ArgoUML represent widely used software and a large
source code. We select them because their feature code presents
interesting characteristics. Freemind and ArgoUML features
are highly tangled and scattered throughout the code, which
leads to a challenging scenario when extracting their code into
aspects. Additionally, the selected features have different gran-
ularity and complexity. Moreover, they have different types
regarding feature model, such as optional, alternative, OR and
mandatory [2].

(2) Feature code identification and assignment. After choos-
ing the feature, we apply Prune Dependency rules [48] to
identify scattered feature code throughout the application.
These rules state that ‘a program element is relevant to a con-
cern if it should be removed, or otherwise altered, when the
concern is pruned from the application’. By following these
rules, two different people can identify the same code related to
a given concern. We choose this rule to reduce introducing bias
while identifying feature code. We use comments to manually
assign the programme elements related to each feature. In this
way, two different researchers could identify and assign our
feature code.

(3) Feature code extraction. For this phase, we extract the
assigned feature code from the classes to aspects, except for
BerkeleyDB, which its feature code was extracted before. Thus,
we aim at separating the feature and core code. This allows
the creation of product lines from the applications. After this
phase, the application should be independent from the feature
code. For example, the application may compile and execute
properly without the optional feature code.

(4) Flexible binding time implementation. We then apply the
idiom for the selected features that we wish to provide binding
time flexibility. We use the chosen idiom to control whether the
feature code is executed. In this work, we duplicate the SPLs in
order to apply each idiom for each feature. However, in prac-
tice, a developer only needs to choose one idiom to provide flex-
ible feature binding. The same authors (first and second) were

in charge of feature code extraction and flexible binding time
implementation.

(5) Evaluate idioms. In this phase, we use the GQM design
to drive our evaluation of the four idioms. Our goal is to assess
the implementation of the idioms in the selected applications.
We elaborate four questions with respect to points that we want
to investigate about the idioms. Then, we answer the questions
by analysing the measures obtained for the selected metrics. To
collect the required information to compute these metrics, we
use the Metrics tool [49], which measures the number of lines
of code of components, such as classes and aspects. Addition-
ally, to compute some of the selected metrics, we need to know
the number of lines of code of the feature and the driver. To do
that, we manually count the corresponding lines. This informa-
tion and the formulas of the metrics are stored in a sheet, which
we used to obtain our results [17]. Moreover, we investigate pos-
sible changes concerning the idiom’s behaviour. For example,
we seek changes in the behaviour of certain feature code with
respect to its implementation using Edicts and Layered Aspects.
We provide details in Section 6.5.

6. RESULTS

In this section, we discuss the results regarding code quality
metrics, such as code cloning, scattering, tangling and size.
Therefore, we assess the implementations of the four idioms
(Edicts and the three we define) to confirm that we are able to
mitigate the problems with Edicts that we have identified. We
answer each of the questions outlined in Section 5.2, so that
we answer each question in the following subsections. In some
of the subsequent discussion, we provide the metric results for
only some of features, when they are demonstrably sufficient
to drive our explanation. However, the complete material pro-
duced in this work is available on our website [17]. We provide
an association of features and the corresponding application
in Table 5. Furthermore, we do not present results from the
Flexible Deployment idiom for the Tetris product line, because
Caesar] does not support some AOP constructs needed to
extract the code of Tetris’ features. Further details are provided
in Section 6.9. In an effort to confirm that there is no differ-
ence in the execution of a given feature code implemented by

TABLE 5. Features and application.

Application Features

Freemind Icons and clouds
ArgoUML
Tetris NextPiece and Record

EnvironmentLock, Checksum, Truncate,
Delete, LookAheadCache, Evictor, NIO,

MemoryBudget, IO and INCompressor

Notation and guillemets

BerkeleyDB

SEcTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 59 No. 1, 2016

ASSESSING IDIOMS FOR A FLEXIBLE FEATURE BINDING TIME 19

different idioms, we seek to determine whether the execution
behaviour changes between the four idioms. To do so, we use
the SafeRefactor tool [15] to compare the behaviour of the same
features implemented with two different idioms in Section 6.5.
Moreover, Sections 6.6—6.8 discuss some threats to validity.
Finally, we discuss the advantages and disadvantages of our
idioms in Section 6.9.

6.1. Cloning

To answer Question 1 and to determine which idiom best
reduces code cloning, we use the CCFinder [46] tool to obtain
the results for the PCC metric. CCFinder is a widely used tool
to detect cloned code, and several researchers have used it for
this purpose [50-54]. We stipulated 40 as the minimum clone
length (in tokens). That is, to be considered a clone, two pairs
of code must have at least 40 equal tokens. Thus, pairs of sim-
ilar code that have, say, 39 tokens are not considered cloned,
and they are disregarded by CCFinder. We decided to disregard
results with fewer than 40 similar tokens owing to the frequent
appearance of pseudo-clones, such as package names. On the
other hand, we did not apply a higher minimum clone length
because, in doing so, we would omit some relevant PCC. We
used a token-based detection method because representing a
source code as a token-sequence facilitates the detection of
clones with different line structures, which cannot be detected
by a line-by-line algorithm [55]. This allows us to detect more
clones in our product lines. In addition, we stipulated 12 as
the token set size (TKS). At 12, the TKS will not consider a
cloned-code fragment as a simple statement, such as a series
of variable declarations, which is often present in classes and
irrelevant in most cases. On the other hand, the TKS is not
so high as to omit some interesting duplications in the code.
Table 6 summarizes the results of the PCC metric.

As expected, Edicts had a higher PCC rate. It frequently
duplicated feature code in concrete sub-aspects. Particularly,
Edicts contained more cloned code in large features that define
many pieces of advice, such as the Memory Budget and Icons
features. However, for features such as Evictor, NIO and IO,
Edicts did not result in cloning, because of limitations to the
CCFinder tool—about which further details are provided in
Section 6.7.

On the other hand, Pointcut Redefinition significantly
decreased the PCC rate for some features, such as Clouds,
Delete and Memory Budget. Moreover, it eliminated code
cloning altogether in EnvironmentLock and LookAheadCache.
The PCC rate was still high for the Memory Budget feature,
however, because it is constituted by a relatively large code
containing many pointcuts. Hence, following the Pointcut
Redefinition idiom design, these pointcuts were redefined in
the concrete sub-aspects, and, consequently, their signatures
were cloned.

In addition, Layered Aspects decreased the PCC rate even
more for Delete, Memory Budget and INCompressor. This

TABLE 6. PCC metric results.

Edicts PR

-
>
s
w)

—_
=)

Icons
Clouds
Notation
Guillemets

S 0 = A

NextPiece-Desktop
NextPiece-Mobile
Record-Desktop
Record-Mobile
EnvironmentLock

Checksum
Truncate

Delete
LookAheadCache
Evictor

NIO
MemoryBudget
10

INCompressor

S O N VD ULNDO OO O A~ O WL

o8]
=

(=]
— O N O OO NN OOOOO OO Vv~

N O 3OO O WNOOOOO OO v~ i

—_— 0O = O O O O wn O W |

(3]

happened because not all pointcuts needed to be redefined,
unlike with Pointcut Redefinition. However, for Memory Bud-
get, which presents some pieces of around advice, Layered
Aspects must still redefine pointcuts related to the around
advice, as explained in Section 3.2.

To summarize these results, the Flexible Deployment idiom
drastically reduced the PCC rate for the Memory Budget fea-
ture. As explained in Section 3.3, Flexible Deployment uses
the dynamic deployment of aspects to implement a dynamic
binding time, such that it is unnecessary to redefine pointcuts or
duplicate feature code between the concrete aspects. Nonethe-
less, some interesting code cloning is apparent. The PCC rate
for EnvironmentLock and Truncate is worse than it is in other
idioms, owing to the need for wrapper classes, which some-
times have long names. These are examples of code cloning
that, despite being identified by CCFinder, is irrelevant, as we
explain in Section 6.7.

Furthermore, the NextPiece and Record features, which fall
within the context of feature interaction, do not contain clones
because they have only static binding times in the mobile ver-
sion, and only dynamic binding in the desktop version. Thus,
the code differs depending on the platform. In addition, Evictor,
NIO and 10 are especially small features with few tokens in their
program elements. Whereas we know that Edicts clones at least
the advice code between the concrete aspects, the CCFinder tool
was not able to detect it. Moreover, the Notation feature is a sub-
system that activates and deactivates its code in a manner similar
to the four idioms.

We conclude that Edicts may be harmful in terms of code
maintenance. The reason for drawing this conclusion is that

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 59 No. 1, 2016

20 R. ANDRADE et al.

Edicts clones all the advice within a feature implementa-
tion [56]. Therefore, in maintaining the application code, a
programmer will need to alter the same code for static and
dynamic binding-time implementations. Although our idioms
clone less code, they still duplicate some, and this may be
harmful to code maintenance in specific cases. Nevertheless,
we contend that Edicts is the worst idiom insofar as it has the
highest cloning rate overall. Whereas Kapser and Godfrey [19]
state that code cloning is not always harmful, we did not detect
any similarities in the type the code duplication nor patterns
of non-harmful code replication. Therefore, the code duplica-
tion we uncovered may be harmful in terms of code reuse and
understanding.

6.2. Scattering

As mentioned in Section 5.2, we used DOSO, DOSC and CDC
to analyse feature and driver-code scattering for each idiom.
Feature code and driver code represent different concerns,
so we analysed them separately. By using these metrics, we
pursued an answer to Question 2 in Section 5.2. In the follow-
ing sections, we show the results from only some features, an
abridgement that we believe is sufficient for the purposes of
our discussion. However, we have provided the full results in
our online appendix [17].

6.2.1. Driver

We turn now to a discussion of driver-code scattering. Figure 13
presents the results from applying the DOSO metric. Edicts and
Pointcut Redefinition reported the most scattering because they
scatter driver code throughout many program elements. For
example, the Edicts idiom introduces driver code into several
pieces of advice. Moreover, Pointcut Redefinition intro-
duces driver code into the redefined pointcuts in the concrete
sub-aspect. In contrast, Layered Aspects increases the DOSO
results only in cases where pointcuts related to the around

B Edicts ™ PointcutRedef

advice are redefined (see Section 3.2). Accordingly, Flexible
Deployment had less driver scattering, owing to the dynamic
deployment of aspects that implement the driver mechanism in
only one pointcut and advice procedure. The Truncate feature
reported a DOSO value of zero, because it does not implement
advice. The Notation feature had an equivalent result in all the
idioms because its implementation is similarly independent of
the idiom. This happens because the Notation feature consists
of a subsystem in the architecture of ArgoUML. Hence, this
feature is not scattered throughout the source code and we only
need to deactivate the subsystem. The /O and NIO features have
only one piece of advice, resulting in a DOSO of zero for them
as well, since there is only one if statement for each piece of
advice. We should also observe that NextPiece-Desktop and
NextPiece-Mobile have identical results, owing to feature inter-
action. Indeed, as revealed by the source code for our Tetris
application [17], applying driver code to interactive features is
no different from applying it to features that do not interact.
To assess scattering from another perspective, we also
considered the DOSC metric. This allows us to identify cases
where code scattering occurs at a class or aspect level. Although
driver-code scattering is common when considering pointcuts
and advice, it is unusual in classes or aspects, because some
features are small and do not require more than a single aspect
for their implementation. Therefore, the driver code is imple-
mented only in a concrete sub-aspect. Figure 14 shows the
results from applying the DOSC metric. The Delete, Memory
Budget and INCompressor features use more than one aspect
to implement the feature code. Therefore, their respective
DOSC results will vary when the driver is also implemented
in more than one aspect, because we must implement static
and dynamic binding in concrete sub-aspects defined for each
abstract aspect. This is especially detrimental for Edicts and
Pointcut Redefinition, because driver code is introduced in the
concrete sub-aspects to implement a dynamic binding time. On
the other hand, the DOSC is zero for the other features because

LayAspects M FlexDeploy

0.9

0.7

0.5
0.4
0.3 A
0.2
0.1

0 -
S o \ "
\co® ﬂo"‘“\o“e—oes\“o.p ce—“’\ob\\echecv‘su rune®
‘?'\ec *‘p\e
“e* Ne

0] X
N\mo(\IB\)d%e
w\e

FIGURE 13. DOSO Driver metric results.

SEcTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 59 No. 1, 2016

ASSESSING IDIOMS FOR A FLEXIBLE FEATURE BINDING TIME 21

0.9
0.8
0.7
0.6
0.5 W Edicts
0.4 —

0.3
0.2 B LayAspects

¥ PointcutRedef

0.1 FlexDeploy

FIGURE 14. DOSC Driver metric results.

the driver code is implemented in only one aspect. Therefore, it
is not scattered throughout the components that implement the
feature code.

In this context, we can observe that DOSO and DOSC draw
different conclusions. Scattering at the level of operations
depends on the number of elements, such as the number of
pointcuts or pieces of advice. Therefore, on account of their
design, as explained in Sections 2 and 3, Edicts and Pointcut
Redefinition are generally worse at the level of operations. On
the other hand, scattering at the component level depends on
the number of elements such as classes and aspects. In this
way, only feature implementations that contain more than
one abstract aspect lead to code scattering. This is why Icons
resulted in driver-code scattering at the level of operations
(with the driver code in more than one operation), whereas it is
absent at the component level (with feature code in more than
one aspect).

Finally, it is important to observe that driver-code scattering
is potentially harmful to code maintenance. Indeed, because
the implementation of Edicts and Pointcut Redefinition leads
to a higher DOSO and DOSC for the driver code, there is a
potential need to change the same concern code throughout
several elements. For Layered Aspects, only one aspect must
be addressed, whereas for Flexible Deployment, one aspect and
exactly two elements must be addressed. Thus, maintaining the
driver code should be easier with the latter two idioms. Because
Edicts and Pointcut Redefinition frequently scatters the driver
code, it is difficult with both idioms to reuse a driver implemen-
tation. However, Layered Aspects and Flexible Deployment
permit for easier driver-code reuse, because the corresponding
code is localized in one component and few elements.

6.2.2. Feature

Next, we discuss feature-code scattering. The DOSC met-
ric depends on the number of components related to feature
implementation. Therefore, we consider scattering from two
perspectives. From a package perspective, the feature code is

well localized, owing to its implementation in a single package.
Therefore, there is no scattering at the package level. From the
perspective of components (i.e. classes or aspects), a single fea-
ture implementation may employ multiple aspects, leading to a
scattering of the feature code. Deciding the optimal number of
aspects to implement feature code is an engineering matter [8].
However, we used an equivalent number of aspects for a given
feature. Thus, all of the flexible binding time implementations
for the four idioms are consistent. The number of aspects may
vary as a result of the idiom’s particularities, but not as a result
of the feature implementation.

According to the results shown in Fig. 15, Edicts scatters
the feature code because its design leads to the implementation
of feature code in the abstract aspect as well as in the concrete
sub-aspects. In contrast, the other idioms scatter feature code
only when multiple aspects are used in their respective imple-
mentations, as Memory Budget. For these features, we use
more aspects to implement their code because they are large,
so each aspect is responsible for a particular feature concern.
In other cases, Layered Aspects, Pointcut Redefinition and
Flexible Deployment resulted in low DOSC results. This was
expected, because the concrete empty aspect is used to allow
for the feature code’s instantiation, as explained in Section 3.1.

In addition, we applied another metric to measure the scatter-
ing, to analyse it from a different perspective. The CDC metric
allows us to identify potential differences between the idioms
(Fig. 16). Differences between the idioms appear when we use
more than one aspect to implement the feature code. Notice that
Edicts and Pointcut Redefinition have the worst results, owing
to their design. These idioms define two concrete sub-aspects to
implement static and dynamic binding for each abstract aspect.
On the other hand, Layered Aspects and Flexible Deployment
implementations contain fewer components because there is no
need to define the concrete sub-aspects for each abstract aspect.

Finally, DOSC and CDC show that our idioms generally
reduce feature-code scattering relative to the Edicts idiom. The
CDC metric complements DOSC because it shows that our
idioms also reduce feature code scattering when we use mul-
tiple aspects to implement the feature, as demonstrated by the
Memory Budget feature. In addition, and analogous to driver-
code scattering, the Edicts idiom contains more crosscutting
feature code, which may hampers code reuse [57].

6.3. Tangling

This section answers Question 3 by investigating the extent of
tangling existing between the feature and driver code. Accord-
ing to the principle of Separation of Concerns [58], one should
be able to implement and reason about each concern indepen-
dently.

In this work, we assume that the greater is the tangling
between the feature code and its driver code, and the worse is
the separation of those concerns. As mentioned in Section 5.2,

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 59 No. 1, 2016

22 R. ANDRADE et al.

W Edicts

B PointcutRedef

LayAspects M FlexDeploy

\ete WO et \O 0550¢

of° . _xof x0P o\ R
\! 0\3. e—oes‘&. ce_N\O “eg\(‘z “\“\ oe - \16“6% 0((‘9‘
“ei&v\ec ‘\\e*‘?\e N\e‘“ \@C
FIGURE 15. DOSC feature metric results.
M Edicts ™ PointcutRedef LayAspects M FlexDeploy
40
35
30 +
25
20
15
10 +
S +
0 e B
S as o0 \e o e (¢} et O
\0™ o “oxa“o e_oes\ao? ce-“’\ob\ C“ec\<5u <qune? A\ NB“d% \
piec P\e eO
Ne‘k‘ ner W
FIGURE 16. CDC metric results.
0.5 0.4
945 035
0.4
03
0.35
03 0.25
025 I 1 111 ® Edicts 02 m Edicts
02 H PointcutRedef 0.15 - H PointcutRedef
0.15 + -
01 + I L 4§ "layAspects 011 = LayAspects
0.05 I I l FlexDeploy 0.05 - FlexDeploy
0 T T T T 0 -
X
<,°°" o‘)s, & & s & ® b‘g'\ N \Qo& e R s & &
A o SR OIS & o 3 & s RN >
N 8 2y B S ¢ 8 S
Q'\é‘ .\8& @z@ 8\?5‘ \‘&6\
& ¥ ‘\6"

FIGURE 17. DOTO metric results.

we measure the DOTO and DOTC. Figures 17 and 18 show the
DOTO and DOTC results, respectively.

Edicts has a high DOTO rate because we implemented the
driver code for each piece of advice. As a consequence, the

FIGURE 18. DOTC metric results.

feature and driver code are tangled in the concrete sub-aspect
that implements a dynamic binding time. The other three
idioms do not tangle the driver and feature code, because the
abstract aspect contains only feature code and the concrete

SEcTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 59 No. 1, 2016

ASSESSING IDIOMS FOR A FLEXIBLE FEATURE BINDING TIME 23

sub-aspect that implements dynamic binding contains only the
driver implementation. Hence, there is no advice or pointcut
with the feature code defined in the Pointcut Redefinition, Lay-
ered Aspects or Flexible Deployment implementations that are
associated with the driver code.

The feature interaction presented in features NextPiece-
Desktop and NextPiece-Mobile influences the DOTO results.
As seen in Fig. 17 the former feature shows a high degree of
tangling (DOT), whereas the latter does not. This happens
because NextPiece-Desktop interacts with Desktop, which
demands dynamic feature binding, as explained in Sections 4
and 5.1.1. Therefore, it must tangle the feature and driver code
with the Edicts idiom. On the other hand, NextPiece-Mobile
interacts with the Mobile feature, which demands only static
feature binding. Thus, it does not require a driver. Further-
more, theNextPiece-Desktop feature resulted in the highest
DOTO because its implementation contains only advice and,
following Edicts’ design, all of these pieces of advice are
tangled with the driver code. As we explained in Section 2,
the driver code is equally distributed among the pieces of
advice. That is, they contain the same if statement, result-
ing in each piece of advice having the same quantity of driver
code. On the contrary, features that present a low DOTO have
few pieces of advice that contain feature and driver code
compared to the total number of operations in this feature
implementation.

Similarly, Edicts” implementation tangles the driver and fea-
ture code with respect to the aspects, as illustrated in Fig. 18.
At least one concrete sub-aspect resulted in code tangling,
owing to Edicts’ structure. The situation is more egregious for
feature implementations that use more than one aspect, such
as Memory Budget. On the other hand, the other three idioms
implement a separated aspect that contains only the driver
mechanism. Therefore, for them, the DOTC is zero, except
in the case of the Notation feature, which presents a similar
implementation for all idioms, as we explained in Section 6.2.
Notice that DOTO and DOTC are zero for NextPiece and
Record because we implemented them to run on mobile envi-
ronments, which binds the feature statically. As a result, there
is no driver code. In addition, the DOTO and DOTC are also
zero for the Truncate feature, because it does not implement
pieces of advice, and consequently there is driver code for it
either.

In this context, using Edicts for implementations with a flex-
ible binding time is more difficult to maintain and reuse than
using other idioms. Because driver and feature codes are highly
tangled, and because they both represent different concerns,
it would be difficult and error-prone to modify the driver, for
instance. Another example of this difficulty is found in imple-
menting new pieces of advice, owing to new requirement or
change requests and neglecting to introduce an if statement
containing the driver code. This risks hindering the execution
of the feature code.

TABLE 7. SLOC metric results.

Edicts PR LA FD
Icons 2198 2180 2127 2031
Clouds 2015 1919 1897 1833
Notation 172 172 172 153
Guillemets 320 208 181 178
NextPiece-Desktop 516 515 506 -
NextPiece-Mobile 450 449 435 -
Record-Desktop 511 507 387 -
Record-Mobile 460 335 455 -
EnvironmentLock 160 119 116 118
Checksum 476 469 441 456
Truncate 157 157 157 178
Delete 460 358 338 358
LookAheadCache 140 146 134 134
Evictor 452 466 460 470
NIO 61 52 52 52
MemoryBudget 1891 1397 1397 1285
10 74 66 66 62
INCompressor 592 584 584 570

6.4. Size

To answer the fourth question, we must identify the idiom that
most efficiently reduces the size of its implementation, which is
related to the size of each idiom in terms of the lines of code and
the number of components. For this purpose, we used the SLOC
and VS metrics.

As explained in Section 2, to support the flexible binding time
of a feature, the Edicts idiom introduces two additional concrete
sub-aspects for each aspect implementing the feature code. This
situation leads to higher SLOC rates, mainly because of code
duplication introduced by dynamic and static aspects. Table 7
presents the SLOC metric results. In general, the three idioms
we defined achieved better results than Edicts, on account of the
relative reduction in feature and driver code duplications. The
difference is more conspicuous when features are large and con-
tains many pieces of advice that are duplicated in the concrete
sub-aspects. For example, the SLOC for Edicts is high for the
Memory Budget feature compared to the other idioms, because
it is large and contains many pieces of advice. In contrast, the
Truncate feature does not contain any advice and, consequently,
the Edicts idiom does not duplicate them, resulting in a relatively
lower SLOC for Edicts with respect to this feature.

We analysed the implementation size by using the VS metric
from the perspective of the number of components. The results
are tabulated in Table 8. Unlike in the other graphs, there is a
discernible difference between the product lines as a result of
applying this metric. Most SPLs use a comparable number of
components to implement features. However, differences occur
because the Flexible Deployment implementation contains

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 59 No. 1, 2016

24 R. ANDRADE et al.

TABLE 8. VS metric results.

Edicts PR LA FD
Freemind 550 551 549 557
ArgoUML 1622 1621 1621 1629
Tetris 21 21 21 -
Berkeley 345 338 345 350

wrapper classes (Section 3.3.2), resulting in several more com-
ponents than the other idioms for Freemind, ArgoUML and
BerkeleyDB. The Tetris product line has fewer aspects to the
implementation of its features, explaining how the VS results
are equivalent for Edicts, Pointcut Redefinition and Layered
Aspects.

Finally, because the Edicts implementation is larger in size
on account of the code duplication, its code is more difficult to
maintain and understand. The increase in the SLOC forces a
programmer to review more lines of code in order to perform
changes during maintenance. In this context, we observe that
maintaining an Edicts implementation is difficult owing to its
size. However, the evolution of selected applications must be
investigated before we can safely conclude that this observation
is correct.

6.5. Behaviour

To reliably ensure that the execution of an implementation with
a flexible binding time does not change when implementing the
same feature code with different idioms, we used the SafeRefac-
tor [15] tool. This tool uses static analysis to identify common
methods in two SPLs, and it generates unit tests for the identified
methods using Randoop [59]. Subsequently, SafeRefactor runs
the generated test suite for both SPL versions in order to identify
inconsistencies between the results from executing the two test
suites.

In this context, we provided two different versions of the
same application as inputs for SafeRefactor. These versions
differed in the idioms used to implement a flexible binding
time for the features of the application. For example, we pro-
vided one version of the BerkeleyDB product line with Edicts,
and another version using Layered Aspects. SafeRefactor then
generated and executed a test suite to determine whether there
were behavioural changes in the two versions. Table 9 sum-
marizes our results. Note that SafeRefactor generated several
unit tests for each SPL. In addition, it generated the same num-
ber of tests for the source and target projects. For example, it
generated 2005 tests for Freemind implemented with Edicts
(i.e. the source) and 2005 tests for Freemind implemented with
Pointcut Redefinition (i.e. the target). Then, SafeRefactor looks
for differences between the results of the two sets of test execu-
tions. The results are equivalent when no behavioural changes
were found.

TABLE 9. Number of unit tests generated by SafeRefactor.

Edicts and Edicts and Pointcut
Pointcut Layered Redefinition and
Redefinition Aspects Layered Aspects
Freemind 2005 2072 2072
ArgoUML 1443 1443 1443
Tetris 2394 2380 2384
BerkeleyDB 3362 3141 3141

We did not find behavioural changes in the Freemind and
Tetris product lines. However, SafeRefactor found some
behavioural changes in the BerkeleyDB product line. Based
on these results, we were able to determine that we acciden-
tally removed a line of code within a constructor defined in the
FileManager class of the base code. Thereby, we could fix
this inconsistency prior to the execution of our assessment.

Unfortunately, SafeRefactor does not support the CaesarJ lan-
guage. Hence, we could not test the Flexible Deployment imple-
mentation. However, we have not detected behavioural changes
when using the applications implemented with this idiom.

6.6. Threats to internal validity

Threats to the internal validity concern the fact that the assess-
ment affects the results [60]. Therefore, in our work, these
threats suggest the introduction of bias resulting from the selec-
tion of favourable procedures, such as the manner of feature
code assignment. In addition, we can expose decisions that risk
introducing errors to our work and the means for circumventing
them.
BerkeleyDB refactoring. Unlike Tetris, Freemind and
ArgoUML, the feature code for our BerkeleyDB was pre-
viously extracted into aspects by Késtner et al. [33]. However,
their extraction differs from how we extracted the other fea-
tures. For example, their resulting code uses anonymous
pointcuts that are defined where they are used as part of the
advice [24]. Because we used named pointcuts [24] in our fea-
ture code, we refactored Kistner et al.’s code by changing the
anonymous pointcuts to named pointcuts. That is, we separated
pointcuts from advice declarations. Therefore, we avoid bias in
our metric results, because we can count the number of source
code lines that contains pointcuts in the same way we did for
the other named pointcuts. Otherwise, features containing
anonymous pointcuts would present less feature code.
Therefore, the code of BerkeleyDB product line’s features
comply with the other feature implementations. Additionally,
all the refactoring is performed within the existing aspects. We
do not re-assign feature code in the base code.
Feature code identification and assignment unreliability. We
cannot ensure that our extraction of selected features does
not introduce any bias, because the task of identifying and

SEcTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 59 No. 1, 2016

ASSESSING IDIOMS FOR A FLEXIBLE FEATURE BINDING TIME 25

assigning feature code is in a certain way subjective. This may
be a hindrance to researchers who try to replicate our work.
Indeed, there could be discord in the same feature code assigned
by different researchers [61].

However, we have tried to minimize such unreliability in two

ways. First, we used the Prune Dependency Rules [48] to iden-
tify and assign the feature code. These rules define some of the
procedures that the researcher should follow in order to avoid
introducing bias to the resulting extracted feature code, as we
explain in Section 5.3. Secondly, only two researchers (viz. the
first and second authors) identified and assigned the implemen-
tation of the selected features. Most activities were performed
in pairs. We believe that our work is more reliable as a result of
restricting the number of people and encouraging communica-
tion between them.
Behavioural differences between flexible binding time imple-
mentations. Our flexible binding time implementations might
differ in their behaviour. We cannot guarantee that refactor-
ing the base code to extract the feature code and refactoring
upon implementing the four idioms will not result in nominal
differences.

Nevertheless, we used the SafeRefactor tool [15] to create
tests to validate the implementation of the idioms. As explained
in Section 6.5, after applying this tool, we could fix an incon-
sistency between two idioms. Furthermore, in using all four
applications before and after implementing a flexible binding
time, we do not observe any differences in their behaviour.
Data-collection errors. We did not employ a tool or any auto-
mated means for collecting the data to compute our metrics.
Rather, we prepared a digital sheet that contained the formu-
lae of the metrics we selected to perform our assessment. This
document included templates of these formulae, so that we
could input the data required by a given metric corresponding
to the feature implementation we were evaluating. Because
this process is subject to errors resulting from the momentary
inattention of the person performing the evaluation, our metric
results may include unnoticed errors.

Nevertheless, we performed a pair review regarding the
results of our metrics. That is, one researcher collected the data
for a given metric, while another researcher sought inconsis-
tencies to the metric’s results and the source code where the
data was obtained. Alas, we did discover some errors, such as
an incorrect number of source code lines required as input for
the calculus of a given metric. These errors were accordingly
revised and corrected.

6.7. Threats to construct validity

Threats to construct validity cover issues related to the design
of the assessment and its capacity to answer the research ques-
tions [60]. These threats concern the limitations of our cloning
results and metrics that we did not use in our work.

Limitations to the cloning results. In collecting the PCC metric
results, we did not use a manual filter to eliminate the cloned

code that the CCFinder [46] tool detected. Nevertheless, such
a filter would not have resulted in interesting or pertinent
results. At most, we might have detected some uninteresting
clones, such as method overloading. Because of this limitation,
the CCFinder’s results did not include some interesting code
cloning that we might have observed by reading the code, espe-
cially for the Edicts idiom. However, this does not change our
conclusion concerning the harmful effects of the Edicts idiom
regarding code duplication.

To compensate for this issue, we analysed the source code of

each idiom. The CCFinder tool reveals the classes and aspects
in the code where duplication is present. Thus, besides gather-
ing the metric rates, we manually compared the idioms by look-
ing at the cloned code from their respective classes and aspects.
Indeed, it was apparent that Edicts presented more cloned code
than the other idioms.
Metrics limitations. We did not consider metrics such as code
coupling and cohesion. These metrics could help to reveal
opportunities for improving the quality of our flexible bind-
ing time implementations. We could compute the former by
applying the coupling between components metric [62], which
counts the number of classes or aspects declaring methods, and
the advice, constructors, or fields that can be called or accessed
by another class or aspect. Moreover, we could compute the
latter by applying the lack of cohesion over operations [63]
metric, which counts the number of operation pairs (i.e. meth-
ods or advice) working on fields with different classes and
aspects (non-statically) minus the operation pairs working on
common fields.

However, we gathered our conclusions based on a set of met-

rics that considered eight indices with respect to cloned code,
scattering, tangling and size. In addition, no previous work in the
literature has evaluated the implementation of a flexible binding
time regarding these issues.
External attributes. We discussed code reuse, maintenance and
understanding, based on our metrics, knowledge and intuition.
Because internal attributes, such as code tangling and scat-
tering measurements, are insufficient for empirically tracing
external attributes, we can only conjecture about increases or
decreases in these quality factors when considering idioms and
their implementations. Nevertheless, we could explore these
internal and external attributes by generating new research
questions, for instance.

6.8. Threats to external validity

Threats to the external validity concern a generalization of the
results [60]. Thus, we must discuss how our selected SPLs might
be generalized, and we limit our results to applications that con-
sider only one driver mechanism.

Limitations to the selected SPLs. To perform our assessment,
we selected systems that we transformed into SPLs. They
were written in Java, and variability was implemented using
AOP. Therefore, we cannot generalize the results presented

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 59 No. 1, 2016

26 R. ANDRADE et al.

in this work for distinct contexts such as other programming
paradigms or languages. For example, we would be able to
reduce the DOSO for the Layered Aspects idiom if AspectJ sup-
ported proceed outside advice, because we would not need
to redefine the pointcuts in order to implement the bind time for
around advice, as explained in Section 3.2.1. Moreover, the
results from the token-based cloning metric are tied in a cer-
tain way to the language in which the SPLs were implemented
(viz. Java). Indeed, we could alter the results by changing the
language, which might require a different number of tokens to
implement the same program elements.

Nevertheless, the combination of Java and Aspect] can be
used together in SPLs to reinforce the significance of our find-
ings. The results are likely to apply to other SPLs that conform
to the technologies we considered. On the other hand, we must
emphasize that the collected results are specific to the type of
technology we used. We have no evidence that the results may
be generalized to other contexts.

Finally, we selected a subset of 10 features out of the exist-
ing 38 in BerkeleyDB. We attempted to select a representative
subset of features, so that the results would not be repetitious.
However, our choice was subjective; we based it on the code’s
characteristics. Consequently, we may have missed some inter-
esting features.

6.9. Discussion

In this section, we qualitatively discuss the idioms. The Edicts
idiom may experience problems in several cases. Edicts clones
the feature code because it duplicates advice in the sub-aspects
of its structure. Further, it scatters and tangles driver code
throughout the advice. Besides that, its implementation size
tends to be larger, just because it clones parts of the feature
code. These problems are detrimental to software maintenance.
For instance, if programmers forget to introduce the driver
mechanism to a piece of advice, a runtime exception is possible
when the feature is deactivated. Maintaining the feature code
will also be time consuming and error-prone, owing to the code
cloning and scattering. For example, the same problem must
be twice-repaired in two concrete sub-aspects.

In contrast, Pointcut Redefinition does not clone the feature
code, because it is localized in the abstract aspect. Therefore,
it is not duplicated in the sub-aspects. However, it does scatter
the driver code throughout the pointcuts that are redefined in
the concrete sub-aspects. This can be harmful when adding,
updating, or removing the driver mechanism. If the feature
implementation has several pointcuts, the driver code must be
changed at several pointcuts. Nevertheless, Pointcut Redef-
inition does not tangle the feature and driver code, because
the concrete sub-aspect that implements the driver mechanism
does not contain the feature code.

The Layered Aspects idiom does not clone the feature code
either. Unlike Pointcut Redefinition, however, this idiom only
scatters the driver code when around advice is present. Thus,

we mitigated the aforementioned problem regarding changes
to the driver mechanism. However, Layered Aspects does not
resolve this issue completely, because it must scatter driver
code throughout the redefined pointcuts. Yet, this idiom does
not tangle the feature and driver code, because neither of the
concrete sub-aspects contain any feature code. The feature
code is implemented only in the abstract aspect, which does not
contain the driver code.

To summarize, Flexible Deployment does not clone, scatter
or tangle the feature and driver code. Nevertheless, CaesarJ]
has some disadvantages, insofar as it does not support some
AOQP constructs we use to extract feature code. For example,
we faced problems implementing two features from Tetris
because a class that is inherited from another may vary between
desktop and mobile platforms. Because CaesarJ does not pro-
vide mechanisms to define the inheritance of classes, such
as the declare parents statement in Aspect], we could
not implement these features without introducing bias to the
evaluation, as a result of numerous changes to Tetris. More-
over, CaesarJ does not support privileged access for non-public
members. Thus, we must change the visibility of some methods
in order to access them from within the CaesarJ virtual classes.
On the other hand, the Caesar] language has the advantage
of supporting dynamic virtual-class deployment, which we
used to implement dynamic feature binding in a concise and
localized manner, as we explained in Section 3.3. Furthermore,
we developed Flexible Deployment with one of the authors of
Caesar]J [23]. Thus, we could again collaborate to enhance the
language by identifying some of its deficiencies.

The implementations of a flexible binding time using the four
idioms was performed by the same person to avoid introduc-
ing a bias. Consequently, the feature code was extracted into
aspects in the same way, and each idiom was applied following
its design for the features of the selected applications.

Nevertheless, our idioms may suffer some deficiencies. For
example, the activation or deactivation of a feature may require
activating or deactivation another, owing to the optional fea-
ture problem [64]. For dynamic binding, if we do not validate
feature compositions when applying changes, runtime errors
are possible, compromising the programme’s execution. In this
work, we did not validate the composition of features dynam-
ically. Therefore, our idioms may reveal deficiencies when
(de)activating features at runtime. This is a possibility in the
BerkeleyDB product line. For example, the activation of the
Truncate feature implies the activation of the Delete feature.
Hence, if one of our idioms dynamically deactivates Delete, the
Truncate feature will not work properly. We plan to circumvent
this issue in future work.

Moreover, previous work has suggested that the execution
of systems for static binding is more efficient than dynamic
binding [37, 65]. Our work does not include an evaluation of
performance and memory consumption. Thus, it is unclear
whether our idioms improve or deteriorate the performance
of feature-code executions. Nevertheless, we did not use

SEcTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 59 No. 1, 2016

ASSESSING IDIOMS FOR A FLEXIBLE FEATURE BINDING TIME 27

techniques or constructs that might harm performance or
memory consumption [8].

Finally, we used only aspect-oriented-based idioms to imple-
ment a flexible binding time for features in applications written
in Java. Thus, some disadvantages to our idioms may appear as
aresult of these technologies. For example, in Section 3.2.1, we
explain that Aspect] does not provide access to the proceed
join-point of the advice. This is a disadvantage, because we
must deactivate each piece of advice one-by-one, rather than
all at once. Therefore, our results might be exclusive to an
AOP context or to our idiom’s implementation, as we discuss
in Section 6.8.

7. RELATED WORK

Besides Edicts, we point out other work regarding flexible bind-
ing times as well as studies that relate aspects and product line
features. Additionally, we discuss how our work differs from
them. In Section 7.1, we present related work that provides
only dynamic binding time. Therefore, their main difference to
our work is that our approach provides both static and dynamic
binding time. On the other hand, we discuss related work con-
cerning flexible binding time in Section 7.2, which includes
approaches that support static and dynamic binding time.

7.1. Dynamic binding time

Rosenmiiller et al. [66] propose an approach for statically
generating SPLs to support dynamic feature binding time. Sim-
ilarly to part of our work, they statically choose a set of features
to compose a product that supports dynamic binding time.
Furthermore, the authors describe a feature-based approach
of adaptation and self-configuration to ensure composition
safety. In this way, they statically select the features required
for dynamic binding and generate a set of binding units that are
composed at runtime to yield the program. Additionally, they
implement their approach in one code base and evaluate it with
concern to reconfiguration

In contrast, we saw opportunities to enhance a previous work,
as explained in Section 2. Thus, we opted to try to fix weaknesses
of Edicts by following the same approach, which is based on
idioms instead of generative or other related mechanism.

Lee et al. [67] propose a systematic approach to develop
dynamically reconfigurable core assets, which lies in the man-
agement of dynamic binding time regarding changes during
the product execution. Furthermore, they present strategies to
manage product composition at runtime. Thus, they are able
to safely change product composition (activate or deactivate
features) due to an event occurred during runtime. The authors
use a home service robot product line as an example of their
dynamically reconfigurable product. Nevertheless, differently
of us, they do not evaluate their approach considering code
quality.

Trinidad et al. propose a process to generate a component
architecture that is able to dynamically activate or deactivate
features and to perform some analysis operations on feature
models to ensure that the feature composition is valid [68].
They apply their approach to generate an industrial real-time
television SPL.

This work provides only dynamic binding time whereas we
support flexible binding time. It aims at adapting systems to
changing requirements. Thereby, they do not consider the per-
formance overhead that dynamic binding should introduce [37].
Further, there is no evaluation of their approach.

Dinkelaker et al. [5] propose an approach that uses a dynamic
feature model to describe variability and uses a domain-specific
language for declaratively implementing variations and their
constraints. Their work has mechanisms to detect and resolve
feature interactions dynamically by validating an aspect-
oriented model at runtime.

Marot et al. [69] propose OARTA, which is a declarative
extension to the AspectBench Compiler [27], which allows
dynamic weaving of aspects. OARTA extends the Aspect]J lan-
guage syntax so that a developer can name a pointcut, which
allows referring to it later on. It is possible that aspects weave
on other aspects. Therefore, they exemplify how to dynam-
ically deactivate features in runtime situations (e.g. features
competing for resources, which may be deactivated to speed
up the execution). By using AspectJ, we would have to add an
if () pointcut predicate to the pointcut of the advice that con-
tains feature code. However, they do not perform an assessment
considering quality of code factors of their approach.

Oliveira et al. introduce a modular mechanism to dynamic
feature binding by means of composition of Object Alge-
bras [70]. The Object Algebras are composed dynamically.
They relay on feature-oriented programming [71]. Another
recent work proposes dynamic feature binding in the context
of Delta-oriented programming [72]. Damiani ef al. provide
dynamic composition of features using a reconfiguration
automaton to specify which configurations are safe. Their envi-
ronment automatically checks whether a reconfiguration is safe.
In [73], they provide a formal foundation for dynamic DOP and
a type system to ensure the safety of dynamic reconfiguration.

7.2. Flexible binding time

Rosenmiiller er al. [37] present an approach that supports
static and dynamic composition of features from a single base
code. They provide an infrastructure for dynamic instantiation
and validation of SPLs. Their approach is based on FOP [71]
whereas our work uses AOP. Further, they use an extension
called FeatureC++- [74] to automate dynamic instantiation of
SPLs.

The usage of C++ as a client language introduces some
specific problems. Static constructs when using dynamic com-
position, virtual classes, semantic differences when comparing
static and dynamic compositions are examples of such problems

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 59 No. 1, 2016

28 R. ANDRADE et al.

[37]. Despite of our work uses only Java as a client language,
we did not observe these problems in our implementations.
Furthermore, the authors only evaluate their approach regard-
ing performance, applicability and memory consumption. In
our work, we focus on a different evaluation regarding code
cloning, scattering, tangling and size, as showed in Section 6.

An alternative proposal considers conditional compilation
as a technique to implement features with flexible binding
times [6]. This work discusses how to apply conditional compi-
lation in real applications like operating systems. Likewise we
describe in our work, developers need to decide what features
should be included to compose the product and their respective
binding times.

However, the work concludes that, in fact, conditional com-
pilation is not a very elegant solution to provide flexible binding
time. Hence, for complex variation points, the situation becomes
even worse.

Another proposal to implement flexible binding time into
features, which is also our previous work, considers aspect
inheritance [18]. It defines an idiom that relies on aspect inher-
itance through the abstract pointcut definition. This solution
states that we have to create an abstract aspect with feature code
and an abstract pointcut definition, then we associate this driver
with the advice. Furthermore, we create two concrete subaspects
inheriting from the abstract one in order to implement the con-
crete driver. Differently from Edicts, Aspect Inheritance avoids
feature code duplication. Despite of the fact that this solution
enhances some weaknesses found in Edicts, it is worst than the
three idioms presented in this work. Thereby, presenting this
idiom again would turn this work unnecessarily repetitious.

Additional Aspect] idioms for flexible binding time appear in
recent work [75]. There we compare the additional new idioms
with Layered Aspects following a similar assessment method.
Here we compare Layered Aspects and other idioms with the
Edicts idiom, bringing evidence that we created better idioms
with respect to code quality factors. Furthermore, our assess-
ment considers the Tetris product line, which is also developed
for Mobile applications. This allowed us to apply and evalu-
ate the idioms in a non-Desktop environment. Moreover, our
evaluation here considers more metrics (DOSO, DOTO and
CDC), so that we could analyse the binding time implementa-
tions in the operation level rather than only in class and aspects
level. Besides that, we use the SafeRefator tool [15] to bring
evidence that the binding time implementations do not interfere
in the execution behaviour. In this way, both are complemen-
tary in the sense that they contribute to the body of evidence on
idioms for flexible binding time.

8. CONCLUSION

In this work, we discussed the implementation of a flexible
binding time for features. We introduced three idioms designed
to address the shortcomings in an idiom called Edicts. Our

idioms mitigated some issues, such as code cloning, scattering
and tangling.

Our first idiom, Pointcut Redefinition, uses the inheritance of
Aspect] aspects and a redefinition of pointcuts to implement a
flexible binding time. We extracted feature code for an abstract
aspect and implemented a static and dynamic binding time for
different concrete sub-aspects. The sub-aspect that implements
static binding is empty and inherits the abstract aspect in order
to prompt its instantiation. The sub-aspect that implements
dynamic binding redefines the pointcuts that were defined in the
abstract aspect and associates them with the driver mechanism.
This idiom mitigates code cloning and tangling, issues that
are beset by Edicts. However, it does not significantly reduce
driver-code scattering, because the pointcuts must be redefined
one-by-one and associated with the driver mechanism.

The second idiom, Layered Aspects, is based on Aspect].
We extracted the feature code for an abstract aspect and
implemented static binding in the same manner as we did
with Pointcut Redefinition. To implement a dynamic bind-
ing time, we defined a concrete sub-aspect that uses Aspect]
adviceexecution in association with a redefinition of the
pointcuts. Layered Aspects reduces code cloning, scattering,
tangling and size, when compared with Edicts

The third idiom, Flexible Deployment, uses a dynamic
deployment mechanism provided by Caesar] to implement
binding-time flexibility. We extracted feature code for a Cae-
sarJ class and implemented static and dynamic binding times
in different CaesarJ classes. To implement static binding, we
defined an empty CaesarJ subclass to allow for the instantia-
tion of the class that contains the feature code. To implement
dynamic binding, we defined a Caesar]J class that contains one
pointcut and one advice to implement the dynamic deployment
mechanism. We could not apply Flexible Deployment to 4 of
our 18 features, because the idiom does not support some AOP
constructs. Nevertheless, Flexible Deployment exhibited sat-
isfactory results when subjected to the metrics It reduces code
cloning, scattering and tangling, when compared with Edicts.

This work evaluated these idioms by means of metrics. To
achieve representative results, we used the idioms to implement
a flexible binding time for 18 features in 4 different product
lines. Our evaluation is based on the GQM design. Thus, we
defined the goals, questions and metrics to assess the idioms for
each of the 18 features. We also discussed qualitative aspects,
such as the advantages and disadvantages of each idiom.

In future work, we shall consider safe dynamic composi-
tion of features. Our applications may present some problems
when activating or deactivating features. For example, NIO
and /0 from BerkeleyDB are alternating features. Thus, if NIO
is already activated when we activate /0, BerkeleyDB will not
work correctly because only one of the features can be acti-
vated at a given time. Hence, we intend to support safe dynamic
composition of features. We will consider two alternatives to
resolve this issue. The first is to attempt the integration of the
domain-specific language proposed by Dinkelaker et al. [5]

SEcTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 59 No. 1, 2016

ASSESSING IDIOMS FOR A FLEXIBLE FEATURE BINDING TIME 29

discussed in Section 7. The second is to create a new technique
for our idioms. We will explore both alternatives to decide
which one fits better in our context.

Besides safe dynamic composition of features, we also intend
to adopt auxiliary tools to support feature extraction such as
CIDE [76]. It would be interesting to compare this extraction
with ours, based on the prune-dependency rule.

Another potential project involves comparing static and
dynamic binding times in terms of performance and memory
consumption, considering different idioms. To do so, we can
analyse the consumption of working memory by observing the
size of particular instances of aspects that implement features
and binding times. Furthermore, we can compare static and
dynamic binding times, and the respective idioms in terms of
performance. The results could lead to new conclusions about
which idioms to adopt. Thus, our evaluation would be more
complete insofar as it not only considers code quality, but also
code execution.

Moreover, we intend to define an idiom that is not based on
AOP. We could address problems inherent to such a paradigm,
such as the impossibility of accessing the proceed join-point
in a generic way, as discussed in Section 3.2.1. Moreover, our
product lines were written in Java, and we have not considered
other languages. Hence, we might also implement a new idiom
based on feature-oriented programming and C++, similar to
Rosenmiiller et al. do in their work [66]. Because related work
has not been evaluated with respect to the metrics we used, we
may achieve some interesting results.

Finally, we can add other metrics to our suite. Sant’Anna
et al. define the Coupling Between Components [77] metric for
AOP. It could be used to count the number of classes or aspects
declaring methods, constructors, or fields that can be called or
accessed by another aspect or class. Likewise, Garcia et al. [45]
define a metric suite that can be pertinent in our context. We
have already adopted some of the same metrics. Yet, we intend
to apply others: weighted operations per component will offer
an enhanced study of the source-code size; concern diffusion
over operations and concern diffusion over SLOC can help to
evaluate code scattering; the lack of cohesion over operations
metric [63] can determine which idiom has the lowest code
cohesion. Consequently, we can better identify difficulties in
terms of the reuse, maintenance, and understanding of the code.
Moreover, Lopez-Herrejon et al. [78] define some interesting
metrics that we can use in further evaluations, such as the fea-
ture crosscutting degree, which counts the number of classes
that are crosscut by a feature.

ACKNOWLEDGEMENTS

We would like to thank colleagues of the Software Productivity
Group (SPG)' for several discussions that helped to improve the
work reported here.

1 http://www.cin.ufpe.br/spg

FUNDING

This work was supported by Centro Nacional de Desenvolvi-
mento Cientifico e Tecnoldgico [grant numbers 141590/2013-0
to R.A., 560256/2010-8 and 484860/2011-9], Fundagdo de
Amparo a Ciéncia e Tecnologia do Estado de Pernambuco
[grant number IBPG-0573-1.03/09 to R.A.], Coordenacéo de
Aperfeicoamento de Pessoal de Niivel Superior [grant number
347/10] and the Instituto Nacional de Ciéncia e Tecnologia
para Engenharia de Software [grant numbers 573964/2008-4
and APQ-1037-1.03/08].

REFERENCES

[1] Pohl, K., Bockle, G. and van der Linden, F.J. (2005) Software
Product Line Engineering. Springer, Berlin.

[2] CMU/SEI-90-TR-021 (1990) Feature-oriented domain analysis
(FODA) feasibility study. Technical Report. Software Engineer-
ing Institute, Pittsburgh, USA.

[3] Rosenmiiller, M., Siegmund, N., Apel, S. and Saake, G. (2011)
Flexible feature binding in software product lines. Automat.
Softw. Eng., 18, 163-197.

[4] Gomaa, H. and Hussein, M. (2004) Dynamic Software Recon-
figuration in Software Product Families. Proc. Int. Workshop on
Product Family Engineering, Siena, Italy, November 4-6, pp.
435-444. Springer, Berlin.

[5] Dinkelaker, T., Mitschke, R., Fetzer, K. and Mezini, M. (2010)

A Dynamic Software Product Line Approach using Aspect Mod-

els at Runtime. Proc. Workshop on Composition and Variability,

Rennes and Saint Malo, France, March 15-19.

Dolstra, E., Florijn, G. and Visser, E. (2003) Timeline Variability:

The Variability of Binding Time of Variation Points. Proc. Work-

shop on Software Variability Management, Portland, USA, May

3-10.

Kiczales, G.,, Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.,

Loingtier, J.-M. and Irwin, J. (1997) Aspect—Oriented Program-

ming. Proc. European Conf. Object—Oriented Programming,

Jyviskyld, Finland, June 9-13, pp. 220-242. Springer, Berlin.

Chakravarthy, V., Regehr, J. and Eide, E. (2008) Edicts: Imple-

menting Features with Flexible Binding Times. Proc. Int. Conf.

Aspect-Oriented Software Development, Brussels, Belgium,

April 14, pp. 108-119. ACM, New York.

[9] Kiczales, G, Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and
Griswold, W.G. (2001) Getting started with Aspect]. Commun.
ACM, 44, 59-65.

[10] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995)
Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, Boston.

[11] Gode, N. and Koschke, R. (2009) Incremental Clone Detection.
Proc. European Conf. Software Maintenance and Reengineer-
ing, Kaiserslautern, Germany, March 24-27, pp. 219-228. IEEE
Computer Society, Washington.

[12] Lieberherr, K., Lorenz, D.H. and Ovlinger, J. (2003) Aspectual
collaborations: Combining modules and aspects. Comput. J., 46,
542-565.

[13] Andrade, R., Ribeiro, M., Gasiunas, V., Satabin, L., Rebelo,
H. and Borba, P. (2011) Assessing Idioms for Implementing

[6

—

[7

—

[8

—_

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 59 No. 1, 2016

http://www.cin.ufpe.br/spg

30

R. ANDRADE et al.

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Features with Flexible Binding Times. Proc. European Conf.
Software Maintenance and Reengineering, Oldenburg, Germany,
March 1-4, pp. 231-240. IEEE Computer Society, Washington.
Liu, J., Batory, D.S. and Nedunuri, S. (2005) Modeling Interac-
tions in Feature Oriented Software Designs. Feature Interactions
in Telecommunications and Software Systems, Leicester, UK,
June 28-30, pp. 178-197. 10S Press, Washington.

Soares, G., Gheyi, R., Serey, D. and Massoni, T. (2010) Making
program refactoring safer. IEEE Softw., 27, 52-57.

Eaddy, M. (2008) An empirical assessment of the crosscutting
concern problem. PhD Thesis at Graduate School of Arts and
Sciences, Columbia University, New York.

Andrade, R., Ribeiro, M., Rebélo, H., Gasiunas, V., Satabin,
L. and Borba, P. (2013) Flexible binding time. http://tinyurl.
com/kgleczd (accessed July 22, 2015).

Ribeiro, M., Cardoso, R., Borba, P., Bonificio, R. and Rebélo,
H. (2009) Does Aspect] Provide Modularity When Implement-
ing Features with Flexible Binding Times? Latin American
Workshop on Aspect-Oriented Software Development, Fortaleza,
Brazil, October 4-5.

Kapser, C.J. and Godfrey, M.W. (2008) Cloning considered
harmful considered harmful: patterns of cloning in software.
Empirical Softw. Eng., 13, 645-692.

Krinke, J. (2001) Identifying Similar Code with Program Depen-
dence Graphs. Proc. 8th Working Conf. Reverse Engineering,
Stuttgart, Germany, 2—5 October, pp. 301-310. IEEE Computer
Society, Washington.

Ducasse, S., Rieger, M. and Demeyer, S. (1999) A Lan-
guage Independent Approach for Detecting Duplicated Code.
Proc. IEEE Int. Conf. Software Maintenance, Florence, Italy,
November 6-10, pp. 109-118. IEEE Computer Society, Wash-
ington.

Clarke, S., Harrison, W.H., Ossher, H. and Tarr, P.L. (1999) Sep-
arating Concerns Throughout the Development Lifecycle. Proc.
Workshop on Object-Oriented Technology, Lisbon, Portugal,
June 14-18, pp. 299-302. Springer, Berlin.

Aracic, 1., Gasiunas, V., Mezini, M. and Ostermann, K. (2006) An
overview of caesarj. Trans. Aspect-Oriented Softw. Dev. I, 3880,
135-173.

Laddad, R. (2009) Aspect] in Action: Enterprise AOP with
Spring Applications. Manning Publications, Shelter Island.
Bodden, E., Forster, F. and Steimann, F. (2006) Avoiding Infinite
Recursion with Stratified Aspects. Proc. of the NODe—Objects,
Aspects, Services, the Web, Erfurt, Germany, September 18-21,
pp- 49-64. GI LNI Lecture Notes in Informatics, Bonn Germany.
Aracic, 1., Gasiunas, V., Klose, K. and Bartolomei, T.T. (2013)
Caesarj project. http://caesarj.org/ (accessed July 22, 2015).
Avgustinov, P. ef al. (2005) ABC: An Extensible Aspect] Com-
piler. Proc. Int. Conf. Aspect-Oriented Software Development,
Chicago, USA, March 14-18, pp. 87-98. ACM, New York.
Jackson, M. and Zave, P. (1998) Distributed feature composition:
a virtual architecture for telecommunications services. IEEE
Trans. Softw. Eng., 24, 831-847.

Gibson, J.P. (1997) Feature Requirements Models: Understand-
ing Interactions. 10S Press, Canada.

Calder, M., Kolberg, M., Magill, E.-H. and Reiff-Marganiec,
S. (2003) Feature interaction: a critical review and considered

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

forecast. Comput. Netw.: Int. J. Comput. Telecommun. Netw.,
41, 115-141.

Sobernig, S. (2010) Feature Interaction Networks. Proc. Symp.
Applied Computing, Sierre, Switzerland, March 22-26.

Basili, V., Caldiera, G. and Rombach, D.H. (1994) The goal ques-
tion metric approach. In Marciniak, J.J. (ed.), Encyclopedia of
Software Engineering, pp. 528-532. Wiley, NJ.

Kistner, C., Apel, S. and Batory, D. (2007) A Case Study Imple-
menting Features using Aspect]. Proc. 11th Int. Software Product
Line Conf., Kyoto, Japan, September 10-14, pp. 223-232. IEEE
Computer Society, Washington.

Kiang, J. (2013) Tetris. http://tinyurl.com/yepgrg3 (accessed July
22,2015).

Miiller, J., Polansky, D., Novak, P., Foltin, C. and Polivaev, D.
(2013) Free mind mapping software. http://tinyurl.com/5qrd5
(accessed June 20, 2015).

2013) Argouml. http://argouml.tigris.org/ (accessed July 22,
2015).

Rosenmiiller, M., Siegmund, N., Saake, G. and Apel, S. (2008)
Code Generation to Support Static and Dynamic Composition of
Software Product Lines. Proc. Int. Conf. Generative Program-
ming and Component Engineering, Nashville, TN, USA, October
19-23, pp. 3-12. ACM, New York.

Booch, G. (2005) The unified modeling language user guide.
Pearson Education, India.

Oracle (2013). Berkeley. http://tinyurl.com/26fr5a (accessed July
22,2015).

Eaddy, M., Zimmermann, T., Sherwood, K.D., Garg, V., Murphy,
G.C., Nagappan, N. and Aho, A.V. (2008) Do crosscutting con-
cerns cause defects? IEEE Trans. Softw. Eng., 34, 497-515.
Bonifécio, R. and Borba, P. (2009) Modeling Scenario Variability
as Crosscutting Mechanisms. Proc. Int. Conf. Aspect-Oriented
Software Development, Charlottesville, USA, March 2-6,
pp- 125-136. ACM, New York.

Apel, S. (2007) The role of features and aspects in software devel-
opment. PhD thesis at School of Computer Science, University of
Magdeburg. Magdeburg.

Figueiredo, E., Garcia, A., Sant’anna, C., Kulesza, U. and
Lucena, C. (2005) Assessing Aspect-Oriented Artifacts:
Towards a Tool-Supported Quantitative Method. Proc. Work-
shop on Quantitative Approaches in Object-Oriented Software
Engineering, Glasgow, UK, July 25-29.

Basili, V.R., Briand, L.C. and Melo, W.L. (1996) A validation of
object-oriented design metrics as quality indicators. IEEE Trans.
Softw. Eng., 22, 751-761.

Garcia, A., Sant’Anna, C., Figueiredo, E., Kulesza, U., Lucena,
C. and von Staa, A. (2005) Modularizing Design Patterns with
Aspects: A Quantitative Study. Proc. Int. Conf. Aspect-Oriented
Software Development, Chicago, USA, March 14-18, pp. 36-74.
ACM, New York.

Kamiya, T., Ohata, F., Kondou, K., Kusumoto, S. and Inoue, K.
(2013) CCfinder Official Site. http://www.ccfinder.net/ (accessed
July 22, 2015).

Baxter, 1., Yahin, A., Moura, L., Sant’Anna, M. and Bier, L.
(1998) Clone Detection using Abstract Syntax Trees. Proc. Int.
Conf. Software Maintenance, Bethesda, USA, November 16-20,
pp- 368-377. IEEE Computer Society, Washington.

SEcTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 59 No. 1, 2016

http://tinyurl.com/kgleczd
http://tinyurl.com/kgleczd
http://caesarj.org/
http://tinyurl.com/yepgrg3
http://tinyurl.com/5qrd5
http://argouml.tigris.org/
http://tinyurl.com/26fr5a
http://www.ccfinder.net/

ASSESSING IDIOMS FOR A FLEXIBLE FEATURE BINDING TIME 31

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Eaddy, M., Aho, A. and Murphy, GC. (2007) Identifying,
Assigning, and Quantifying Crosscutting Concerns. Proc. Int.
Workshop on Assessment of Contemporary Modularization
Technigues, Minneapolis, USA, May 20-26, pp. 2-7. IEEE
Computer Society, Washington.

Sauer, F. (2013) Metrics tool. http://metrics.sourceforge.net/
(accessed June 10, 2015).

School, D.R. and Rajapakse, D.C. (2005) An Investigation of
Cloning in Web Applications. Proc. Special Interest Tracks and
Posters of the Int. Conf. World Wide Web, Sydney, Australia,
July 27-29, pp. 252-262. Springer, Berlin.

Kapser, C.J. and Godfrey, M.W. (2006) Supporting the analysis
of clones in software systems: a case study. J. Softw. Maintenance
Evol.: Res. Practice, 18, 61-82.

Bruntink, M., van Deursen, A., van Engelen, R. and Tourwe, T.
(2005) On the use of clone detection for identifying crosscutting
concern code. [EEE Trans. Softw. Eng., 31, 804-818.
Al-Ekram, R., Kapser, C., Holt, R. and Godfrey, M. (2005)
Cloning by Accident: An Empirical Study of Source Code
Cloning Across Software Systems. Proc. Int. Symp. Empir-
ical Software Engineering, Noosa Heads, Australia, 17-18
November.

Deissenboeck, F., Hummel, B., Jiirgens, E., Schitz, B., Wagner,
S., Girard, J.-F. and Teuchert, S. (2008) Clone Detection in
Automotive Model-Based Development. Proc. Int. Conf. Soft-
ware Engineering, Leipzig, Germany, May 10-18, pp. 603-612.
ACM, New York.

Kamiya, T., Kusumoto, S. and Inoue, K. (2002) Ccfinder: a multi-
linguistic token-based code clone detection system for large scale
source code. [EEE Trans. Softw. Eng., 28, 654-670.

Bruntink, M., van Deursen, A., Tourwe, T. and van Engelen, R.
(2004) An Evaluation of Clone Detection Techniques for Iden-
tifying Crosscutting Concerns. Proc. Int. Conf. Software Main-
tenance, Chicago, USA, September 11-17, pp. 200-209. IEEE
Computer Society, Washington.

Soule, P. (2010) Autonomics Development: A Domain-Specific
Aspect Language Approach. Birkhduser, Basel.

Parnas, D.L. (1972) On the criteria to be used in decomposing
systems into modules. Commun. ACM, 15, 1053-1058.
Pacheco, C., Lahiri, S., Ernst, M. and Ball, T. (2007) Feedback-
Directed Random Test Generation. Proc. Int. Conf. Software
Engineering, Minneapolis, USA, May 19-27, pp. 75-84. ACM,
New York.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B.
and Wesslén, A. (2000) Experimentation in Software Engineer-
ing: An Introduction. Kluwer Academic, Boston.

Lai, A. and Murphy, G.C. (1999) The Structure of Features in Java
Code: an Exploratory Investigation. Workshop on Multidimen-
sional Separation of Concerns, Denver, USA, November 1-5.
Chidamber, S.R. and Kemerer, C.F. (1994) A metrics suite for
object oriented design. IEEE Trans. Softw. Eng., 20, 476-493.
Ceccato, M. and Tonella, P. (2004) Measuring the Effects of
Software Aspectization. Proc. Workshop on Aspect Reverse
Engineering, Delft, The Netherlands, November 8—12.

Kistner, C., Apel, S., ur, Rahman, Batory, D. and Saake, G.
(2009) On the Impact of the Optional Feature Problem: Analysis
and Case Studies. Proc. Int. Software Product Line Conf., San

[65]

[66]

[67]

[68]

[69]

[70]

(71]

(72]

[73]

[74]

[75]

[76]

(77]

Francisco, USA, August 24-28, pp. 181-190. Carnegie Mellon
University, Pittsburgh.

Giinther, S. and Sunkle, S. (2010) Dynamically Adaptable
Software Product Lines using Ruby Metaprogramming. Proc.
Int. Workshop on Feature-Oriented Software Development,
Eindhoven, The Netherlands, October 10-23, pp. 80-87. ACM,
New York.

Rosenmiiller, M., Siegmund, N., Pukall, M. and Apel, S.
(2011) Tailoring Dynamic Software Product Lines. Proc. Int.
Conf. Generative Programming and Component Engineering,
Portland, USA, October 22-23, pp. 3—12. ACM, New York.
Lee, J. and Kang, K.C. (2006) A Feature-Oriented Approach to
Developing Dynamically Reconfigurable Products in Product
Line Engineering. Proc. Int. Software Product Line Conf.,
Baltimore, USA, August 21-24, pp. 131-140. IEEE Computer
Society, Washington.

Trinidad, P., Cortés, A.R. and Benavides, D. (2007) Mapping
Feature Models onto Component Models to Build Dynamic
Software Product Lines. Proc. Int. Softw. Product Line Conf.,
Kyoto, Japan, September 10-14, pp. 51-56. Kindai Kagaku,
Tokyo.

Marot, A. and Wuyts, R. (2010) Composing Aspects with
Aspects. Proc. Int. Conf. Aspect-Oriented Software Devel-
opment, Rennes and Saint-Malo, France, March 15-19, pp.
157-168. ACM, New York.

Oliveira, B., van der, Storm and Cook, W. (2013) Feature-
Oriented Programming with Object Algebras. Proc. European
Conf. Object—Oriented Programming, Montpellier, France, July
1-5, pp. 27-51. Springer, Berlin.

Prehofer, C. (1997) Feature-Oriented Programming: A Fresh
Look at Objects. Proc. European Conf. Object-Oriented
Programming, Jyviskyld, Finland, June 9-13, pp. 419-443.
Springer, Berlin.

Damiani, F. and Schaefer, I. (2011) Dynamic Delta-Oriented
Programming. Proc. Int. Software Product Line Conf., Volume
2, Munich, Germany, August 21-26, pp. 1-8. ACM, New York.
Damiani, F., Padovani, L. and Schaefer, 1. (2012) A Formal
Foundation for Dynamic Delta-Oriented Software Product
Lines. Proc. Int. Conf. Generative Programming and Compo-
nent Engineering, Dresden, Germany, September 26-27, pp.
1-10. ACM, New York.

Apel, S., Leich, T., Rosenmiiller, M. and Saake, G. (2005)
FeatureC++: On the Symbiosis of Feature-Oriented and
Aspect-Oriented Programming. Proc. Int. Conf. Generative
Programming and Component Engineering, Tallinn, Estonia,
September 29-1, pp. 125-140. Springer, Berlin.

Andrade, R., Rebélo, H., Ribeiro, M. and Borba, P. (2013)
Aspect]-Based Idioms for Flexible Feature Binding. Proc. of
the Brazilian Symp. Software Components, Architectures, and
Reuse, Brasilia, Brazil, October 1-4, pp. 59-68. IEEE, San
Francisco.

Kistner, C., Apel, S. and Kuhlemann, M. (2008) Granularity in
Software Product Lines. Proc. Int. Conf. Software Engineering,
Leipzig, Germany, May 10-18, pp. 311-320. Springer, Berlin.
Sant’anna, C., Garcia, A., Chavez, C., Lucena, C. and von Staa,
A.v. (2003) On the Reuse and Maintenance of Aspect-Oriented
Software: An Assessment Framework. Proc. of the Brazilian

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 59 No. 1, 2016

http://metrics.sourceforge.net/

32 R. ANDRADE et al.

Symp. Software Engineering, Manaus, Brazil, October 6-10,
pp. 19-34. ACM, New York.

[78] Lopez-Herrejon, R. and Apel, S. (2007) Measuring and Charac-
terizing Crosscutting in Aspect-Based Programs: Basic Metrics
and Case Studies. Proc. of Fundamental Approaches to Software
Engineering, Braga, Portugal, May and April 24-1, pp. 423-437.
Springer, Berlin.

[79] Wong, W.E., Gokhale, S.S. and Horgan, J.R. (2000) Quantifying
the closeness between program components and features. Jour-
nal of Systems and Software, 54, 87-98.

APPENDIX A
METRICS DEFINITION

In this appendix, we present the definition of DOSC [16],
DOSO [16], DOTC [16] and DOTO [16] metrics. In addition,
we provide each metric’s formulas. Due to their simplicity, we
omit CDC, SLOC and VS details. Additionally, we also omit
PCC details since we use the CCFinder tool to obtain its results,
as explained in Section 6.1.

A.l. DOSC and DOSO

Concentration (CONC) measures how many of the source lines
related to a feature s are contained within a specific component
t [79], which in our case are classes, aspects or operations.

SLOCs in component ¢ related to feature s

CONC(s,1t) =
(s,2) SLOC:s related to feature s

(A.1)

The degree of scattering (DOS) is a measure of the variance of
the concentration of a feature over all components with respect
to the worst case (i.e. when the feature code is equally scattered
across all components) [48]. We measure DOSC considering s
as classes and aspects, whereas DOSO is measured selecting s as
pieces of advice and methods.

_ITI ! (CONC(s,1) = 1/IT])>
7] 1

DOS(s) = 1 (A2)

where T is the set of components and || > 1.

A.2. DOTC and DOTO

Dedication (DEDI) measures how many of the source lines con-
tained within a component ¢ are related to concern s [79].

SLOCs in component ¢ related to feature s
DEDI(s,t) =

SLOCs in component ¢
(A.3)

The DOT is ameasure of the variance of the tangling of acom-
ponent to every feature with respect to the worst case (i.e. when
the component is equally tangled to all features) [48]. We mea-
sure DOTC considering s as classes and aspects, whereas DOTO
is measured selecting s as pieces of advice and methods.

S| Y S(DEDI(s,1) — 1/|S])?

DOT(t) = SI—1

(A.4)

where S is the set of features and |S| > 1.

SEcTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VoL. 59 No. 1, 2016

