
Information and Software Technology 78 (2016) 27–52
Contents lists available at ScienceDirect

Information and Software Technology
journal homepage: www.elsevier.com/locate/infsof

Assessing fine-grained feature dependencies
Iran Rodrigues a , ∗, Márcio Ribeiro a , Flávio Medeiros c , Paulo Borba b , Baldoino Fonseca a ,
Rohit Gheyi c
a Federal University of Alagoas, Maceió, Brazil
b Federal University of Pernambuco, Recife, Brazil
c Federal University of Campina Grande,Campina Grande, Brazil
a r t i c l e i n f o
Article history:
Received 9 August 2015
Revised 18 May 2016
Accepted 23 May 2016
Available online 24 May 2016
Keywords:
Preprocessor
Software family
Feature dependency

a b s t r a c t
Context: Maintaining software families is not a trivial task. Developers commonly introduce bugs when
they do not consider existing dependencies among features. When such implementations share program
elements, such as variables and functions, inadvertently using these elements may result in bugs. In this
context, previous work focuses only on the occurrence of intraprocedural dependencies, that is, when
features share program elements within a function. But at the same time, we still lack studies investi-
gating dependencies that transcend the boundaries of a function, since these cases might cause bugs as
well.
Objective: This work assesses to what extent feature dependencies exist in actual software families, an-
swering research questions regarding the occurrence of intraprocedural, global, and interprocedural de-
pendencies and their characteristics.
Method: We perform an empirical study covering 40 software families of different domains and sizes. We
use a variability-aware parser to analyze families source code while retaining all variability information.
Results: Intraprocedural and interprocedural feature dependencies are common in the families we ana-
lyze: more than half of functions with preprocessor directives have intraprocedural dependencies, while
over a quarter of all functions have interprocedural dependencies. The median depth of interprocedural
dependencies is 9.
Conclusion: Given these dependencies are rather common, there is a need for tools and techniques to raise
developers awareness in order to minimize or avoid problems when maintaining code in the presence of
such dependencies. Problems regarding interprocedural dependencies with high depths might be harder
to detect and fix.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Developers commonly introduce errors when they fail to rec-
ognize dependencies among the software modules they are main-
taining [1] . The same situation happens in configurable systems in
terms of program families and product lines, where features share
program elements such as variables and functions. This way, fea-
tures might depend on each other and developers can miss such
dependencies as well. Consequently, by maintaining one feature
implementation, they might introduce problems to another, like

∗ Corresponding author.
E-mail addresses: irgj@ic.ufal.br , iran@iranrodrigues.com.br (I. Rodrigues),

marcio@ic.ufal.br (M. Ribeiro), flaviomedeiros@copin.ufcg.edu.br (F. Medeiros),
phmb@cin.ufpe.br (P. Borba), baldoino@ic.ufal.br (B. Fonseca), rohit@dsc.ufcg.edu.br
(R. Gheyi).

when assigning a new value to a variable which is correct to the
feature under maintenance, but incorrect to the one that uses this
variable [2,3] .

In this context, developers often use the C preprocessor to
implement variability in software families [4–7] . The C prepro-
cessor allows the use of directives to annotate the code, asso-
ciating program elements with specific features. When a devel-
oper defines a variable in a feature and then uses it in another
feature, we have a feature dependency. The same happens with
functions.

Previous work [8] reports on how often feature dependencies
occur in practice by considering 43 preprocessor-based families
and product lines. However, the study focuses only on intrapro-
cedural dependencies, that is, feature dependencies that occur ex-
clusively within the function boundaries. Nevertheless, dependen-
cies that go beyond function boundaries might be harder to detect.

http://dx.doi.org/10.1016/j.infsof.2016.05.006
0950-5849/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.infsof.2016.05.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.05.006&domain=pdf
mailto:irgj@ic.ufal.br
mailto:iran@iranrodrigues.com.br
mailto:marcio@ic.ufal.br
mailto:flaviomedeiros@copin.ufcg.edu.br
mailto:phmb@cin.ufpe.br
mailto:baldoino@ic.ufal.br
mailto:rohit@dsc.ufcg.edu.br
http://dx.doi.org/10.1016/j.infsof.2016.05.006

28 I. Rodrigues et al. / Information and Software Technology 78 (2016) 27–52
Despite important, we still lack a study that takes other kinds of
feature dependencies into account.

Therefore, to minimize these lack and better understand fea-
ture dependencies, in this work we perform an empirical study to
assess to what extent feature dependencies occur in practice, iden-
tifying their characteristics and frequency. We also compare some
of our results with results from previous work [8] .

Before executing this study, as a first step, we arbitrarily ana-
lyze several bug reports from many open-source software families,
like GCC , 1 GNOME , 2 and Linux kernel. 3 The idea of this first step
is to learn how configuration-related bugs happen in such families
and better prepare our study. After finding examples of bugs re-
lated to feature dependencies, we conduct an empirical study that
complements previous work on this topic, in the sense that we
take interprocedural dependencies into account. Notice that, dur-
ing maintenance of preprocessor-based software, these dependen-
cies are even harder to detect: one feature might use data from
another and they are in different functions. Because in a typical
system we have several method calls passing data, we also com-
pute the depth of such dependencies (from the variable defini-
tion to its use). In addition, we consider dependencies based on
global variables. We also compute the dependency direction, that
is, mandatory-to-optional, optional-to-mandatory, and optional-to-
optional. A mandatory-to-optional dependency, for instance, means
that the definition of the program element (for instance, a global
variable) happens in a mandatory feature—that is, no #ifdef en-
compassing the definition—and its use in an optional feature. In
particular, we answer the following research questions: How often
do program families contain intraprocedural dependencies? How
often do program families contain global dependencies? How often
do program families contain interprocedural dependencies? How
often do dependencies of different directions occur in practice?
What is the dependency depth distribution for interprocedural de-
pendencies? How the results of the current study compare with
the previous ones? Answering these questions is important to bet-
ter understand feature dependencies and assess their occurrence in
practice.

To answer our research questions, our study covers 40 C pro-
gram families of different domains and sizes. We select these fam-
ilies inspired by previous work [6–11] . We rely on TypeChef [12] , a
variability-aware parser, to compute feature dependencies consid-
ering the entire configuration space of each source file of the fam-
ilies we analyze. To detect dependencies that span multiple files,
we perform global analysis (instead of per-file analysis).

The data we collect in our empirical study reveal that the fea-
ture dependencies we consider in this work are reasonably com-
mon in practice, except the ones regarding global variables. Fol-
lowing the convention “average ± standard deviation”, our results
show that 51.44% ± 17.77% of functions with preprocessor direc-
tives have intraprocedural dependencies, 11.90% ± 12.20% of the
functions which use global variables have global dependencies,
while 25.98% ± 19.99% of all functions have interprocedural de-
pendencies.

In summary, the main contributions of this paper are:
• data on feature dependency that reveal to what extent they are

common in practice, complementing previous work by consid-
ering new types of dependencies;

• a strategy to compute feature dependencies based on the Type-
Chef variability parser.
We organize the remainder of this paper as follows. In

Section 2 we introduce the concept of feature dependency. Next, in
1 https://gcc.gnu.org/bugzilla/ .
2 https://bugzilla.gnome.org/ .
3 https://bugzilla.kernel.org/ .

1. #ifdef A
2. int x;
3. #endif
4. …
5. #ifdef B
6. x++;
7. #endif

Fig. 1. Example of a feature dependency regarding variable x .
Section 3 we show motivating examples that illustrate variability
bugs from industrial systems. Then, we present the empirical study
settings in Section 4 . After, in Section 5 we present and discuss the
results. Later, in Section 6 we present some consequences of our
work. In Section 7 we discuss the related work and in Section 8 we
present the final considerations of this work.

This paper is an extension of our previous work [8] on feature
dependency analysis. In this work we bring more evidence regard-
ing bugs related to intraprocedural feature dependencies. Com-
pared to the previous study, we analyze new families and use a dif-
ferent tool, improving its external validity. Moreover, we now take
global and interprocedural dependencies into account, presenting
bugs related to such types of dependencies and computing data
regarding their presence in a set of industrial software families.
2. Feature dependency

A program family consists of a set of programs that share a
common core but also have distinguishing functionalities. These
commonalities and variabilities are often modeled as features, each
representing increments in functionality to the program. Each fea-
ture provides a potential configuration option, so developers can
generate different programs tailored for specific tasks or platforms.
When we consider program families written in C, developers of-
ten use the C preprocessor (cpp) to implement variability in those
systems [4–7] .

The C preprocessor allows the use of conditional compilation
directives such as #if or #ifdef along with a macro expres-
sion to surround feature-specific fragments of code. Macro expres-
sions might contain one or more macros as a boolean formula,
as in #if defined(A) && defined(B) , which might refer to
specific configuration options. The minimum subset of features in
which a fragment of code is included in the conditional compila-
tion is called presence condition [13] . Developers can use preproces-
sor directives to wrap from entire structures such as functions to
part of a statement such as a single variable, allowing variability in
different levels of granularity. This flexibility also allows code from
a single feature to be scattered all over the program.

Often features communicate and collaborate with each other,
so their implementations might share program elements and data.
When different features refer to the same program element, such
as a variable, we have a feature dependency. Following the classifi-
cation proposed by Apel et al. [14] , such feature dependencies we
consider in this paper are operational feature interactions, since a
feature pass data to another one.

To better explain this concept, we refer to the code snippet in
Fig. 1 . In the figure, the definition of variable x (see line 2) is inside
an #ifdef block, associated to the macro expression A (see line
1). In practice, not all macros in a macro expression correspond to
actual features in a broader sense. However, since feature models
are not always available, and for the sake of simplicity, in this work
we consider that each macro in a macro expression refers to a dif-
ferent feature. That said, we consider that the definition of x is in
a code fragment of feature A . Likewise, x is later incremented (see
line 6) in a code fragment of feature B (see line 5). This means that
the definition of x will be included in the compilation if and only

https://gcc.gnu.org/bugzilla/
https://bugzilla.gnome.org/
https://bugzilla.kernel.org/

I. Rodrigues et al. / Information and Software Technology 78 (2016) 27–52 29
 1. GInetAddress *g_inet_address_new_from_string (…) {
 2. G_OS_WIN32#ifdef
 3. sockaddr_storage sa;struct
 4. …
+ 5. volatile GType type;
 6. gint len;
 7. #else /* !G_OS_WIN32 */
 8. …
 9. #endif
- 10. (void) g_inet_address_get_type ();
+ 11. type = g_inet_address_get_type ();
 12. …
 13. }

+ Including line Removing line-

Fig. 2. Adding an intraprocedural dependency, causing a bug in GLib .
if we define A . Similarly, the increment of the same variable will be
included if and only if we define B . In other words, the presence
condition of statement int x is A , whereas the presence condi-
tion of statement x++ is B . Since the use of x in a code fragment
of B depends on its definition in a code fragment of A , we can say
that feature B depends on feature A .

In this paper we focus on three types of feature dependen-
cies: intraprocedural, global , and interprocedural dependencies. We
explore them in the next section.
3. Motivating examples

Developers often use preprocessors to implement variabil-
ity in software families, even though they might induce to er-
rors [4,5,15,16] .

In this work, we refer to bug as both faults and errors, in which
a fault is an incorrect instruction in the software code, due to a
developer mistake, and an error is an incorrect program state, due
to a fault [13] .

A variability bug is a fault or error that happens in some, but
not all, feature configurations of a software family [13] . A category
of variability bugs is related to feature dependencies. Due to this
dependency, a maintenance task in one feature might break an-
other one [8] . This might happen since there is no mutual agree-
ment [17] between the developers.

To better illustrate that feature dependencies might cause prob-
lems, in this section we present three scenarios of C program
families containing actual variability bugs related to dependencies.
First, we present an example of variability bug regarding an in-
traprocedural dependency (Section 3.1). Then, we present a vari-
ability bug related to a global dependency (Section 3.2). Next, we
present a variability bug regarding an interprocedural dependency
(Section 3.3). Finally, we summarize our findings on this topic
(Section 3.4).
3.1. Scenario 1: intraprocedural dependency

In this work we refer to intraprocedural dependencies when fea-
tures share the same program element inside a function. For exam-
ple, we may have a local variable defined in a feature and used in
another one.

Thus, we have an intraprocedural dependency every time the
definition of a local variable has a different presence condition
than its use. We refer to every variable in this situation as depen-
dent variable . Intraprocedural dependencies can only occur in func-
tions containing preprocessor directives, since there should be at
least one #ifdef (or equivalent) directive surrounding a depen-
dent variable inside such a function.

Fig. 2 presents a code snippet from GLib , 4 a general-purpose
utility library for applications written in C. The figure shows a
modification made to the code, by including and removing spe-
cific lines, committed to a Git repository. 5 In the figure, the func-
tion g_inet_address_new_from_string parses a string con-
taining an IP address. Inside this function, there is a call to
g_inet_address_get_type (see line 10). To ensure that the
compiler would not optimize away this function, the developer
added a volatile variable, type (see line 5), assigning the function
return value to such a variable (by removing line 10 and adding
line 11).

The problem is that the definition of type is inside an
#ifdef block, and therefore it is accessible only when we de-
fine G_OS_WIN32 . Such macro expressions, consisting of one or
few macros, are fairly common in the program families of our
study, as we shall see in Table 2 . Notice that the developer intro-
duced an intraprocedural dependency for the variable type . We
say that the direction of this dependency is optional-to-mandatory,
as the presence condition of the variable definition (see line 5) is
G_OS_WIN32 , whereas the presence condition of the variable use
(see line 11) is true . In case we do not set G_OS_WIN32 , that is,
in a non- Windows system, we get an undefined variable error for
the variable type and cannot compile the code.

Fig. 3 shows a new modification in the code, in order to fix
this variability bug. 6 To do so, the developer relocated 7 the type
variable definition to a mandatory portion of code (by removing
line 6 and adding line 2). This modification makes the presence
condition of both variable definition (see line 2) and its use (see
line 11) the same, ceasing the dependency.

In this work, we consider two points for a dependency: the
maintenance point and the impact point . For intraprocedural de-
pendencies, we define a maintenance point as the point where
we can change the name, type, or value of a dependent variable.
Thus, a variable definition or assignment are possible maintenance
points. The impact points are the points we can affect by chang-
ing the maintenance point, or, in other words, where the depen-
dent variable is later referenced. Notice that a maintenance point,
such as a variable assignment, can also be an impact point, regard-
ing a previous maintenance point. Moreover, to have a dependency,
the presence condition of the maintenance point must be different
than the impact point. In Fig. 2 , we have an example of mainte-
nance point at line 5 and an impact point at line 11.

4 https://developer.gnome.org/glib/ .
5 https://git.gnome.org/browse/glib/ .
6 https://bugzilla.gnome.org/show _ bug.cgi?id=580750 .
7 https://goo.gl/YFPD4F .

https://developer.gnome.org/glib/
https://git.gnome.org/browse/glib/
https://bugzilla.gnome.org/show_bug.cgi?id=580750
https://goo.gl/YFPD4F

30 I. Rodrigues et al. / Information and Software Technology 78 (2016) 27–52
 1. GInetAddress *g_inet_address_new_from_string (…) {
+ 2. volatile GType type;
 3. G_OS_WIN32#ifdef
 4. sockaddr_storage sa;struct
 5. …
- 6. volatile GType type;
 7. gint len;
 8. #else /* !G_OS_WIN32 */
 9. …
 10. #endif
 11. type = g_inet_address_get_type ();
 12. …
 13. }

+ Including line Removing line-

Fig. 3. Removing the dependency to fix the bug in GLib .

Fig. 4. Global dependencies of different directions.
3.2. Scenario 2: global dependency

Dependencies often transcend the boundaries of a function. A
global dependency is similar to an intraprocedural dependency, ex-
cept that the dependent variable is global, not local. In a global
dependency the global variable appears outside a function and is
used within a function. As we can define a global variable in a
different file from where we use it, we might overlook these de-
pendencies.

Notice that, unlike intraprocedural dependencies, we can have
global dependencies even in functions that do not have preproces-
sor directives. This can happen since we have a global variable de-
clared in an optional feature and used within such a function in a
mandatory feature. Fig. 4 illustrates two functions with global de-
pendencies. While the function in the left-hand side of the figure
contains a mandatory-to-optional dependency and a preprocessor
directive (#ifdef), the right-hand side shows a function with an
optional-to-mandatory dependency, but without any directives.

Fig. 5 presents a code snippet of the libxml2 8 software fam-
ily, a XML parser written in C. The figure depicts a modification
made to the code, committed to a Git repository. 9 In the figure we
have a global variable, xmlout (see line 3). A preprocessor condi-
tional directive (#if defined(HTML) || defined(VALID))
surrounds its definition, which means the variable xmlout is
available if we define at least one of the macros. Notice that the
developer added lines 10 and 11 to the code, using the xmlout
variable inside the function parseAndPrintFile in the manda-
tory feature (see line 10). As there is no #ifdef encompassing
the xmlout use, we have a global dependency for this variable.
The direction of this dependency is again optional-to-mandatory,
as the presence condition of the variable definition (the mainte-
nance point) is HTML || VALID while the presence condition of
its use (the impact point) is true .

8 http://xmlsoft.org/ .
9 https://git.gnome.org/browse/libxml2/ .

This dependency triggers a bug 10 if we do not define any of
the macros (HTML or VALID), as we still reference the variable
xmlout in the function parseAndPrintFile while it is unde-
fined. Fig. 6 presents another modification to the code, aiming to
solve this variability bug. In the figure, the developer included 11
the same conditional directive of the variable definition to its use
(by adding lines 10 and 13).
3.3. Scenario 3: interprocedural dependency

We refer to interprocedural dependencies when features share
data among different functions. Consider two functions, f and g .
Function f calls g passing x as an argument. If g uses data from x
in a different feature than the feature associated to the g call in f ,
we have an interprocedural dependency. In this case, maintaining
the argument of the call to g , for instance, by changing its value,
we might break a feature at the points where function g references
x .

For instance, Fig. 7 depicts two situations in which we have
interprocedural dependencies regarding functions f and g . In the
left-hand side of the figure we have a mandatory-to-optional de-
pendency, with a maintenance point at line 3 in a mandatory fea-
ture (where f passes x to g), and an impact point at line 8 in an
optional feature (where g uses x). In the right-hand side of the
figure the situation is just the opposite, as we have an optional-
to-mandatory dependency, given the maintenance point at line 4
is now in an optional feature, while the impact point at line 9 is
in a mandatory feature. This way, just as might happen with global
dependencies, we can also have functions without preprocessor di-
rectives involved in interprocedural feature dependencies.

Fig. 8 presents a code snippet from Lustre , 12 a parallel dis-
tributed file system for high-performance cluster computing. The
figure depicts a modification made to the code, committed to a Git
repository. 13 In the figure, the developer added an #ifdef block
(see lines 4–7) containing a reference to the parameter nd (see line
5), which is a pointer to a struct of type nameidata . Develop-
ers reported a null pointer dereference bug 14 regarding the nd pa-
rameter. When calling the function ll_revalidate_nd , we may
face a null pointer dereference accessing nd- > flags if nd is null.

To solve this problem, the program now checks 15 if nd is null,
right before accessing nd- > flags (see Fig. 9 , line 12). Despite

10 https://bugzilla.gnome.org/show _ bug.cgi?id=611806 .
11 https://goo.gl/gACFs6 .
12 http://www.lustre.org .
13 http://git.whamcloud.com/ .
14 https://jira.hpdd.intel.com/browse/LU-3483 .
15 http://review.whamcloud.com/#/c/6715/5/lustre/llite/dcache.c,cm .

http://xmlsoft.org/
https://git.gnome.org/browse/libxml2/
https://bugzilla.gnome.org/show_bug.cgi?id=611806
https://goo.gl/gACFs6
http://www.lustre.org
http://git.whamcloud.com/
https://jira.hpdd.intel.com/browse/LU-3483
http://review.whamcloud.com/#/c/6715/5/lustre/llite/dcache.c,cm

I. Rodrigues et al. / Information and Software Technology 78 (2016) 27–52 31

Fig. 5. Adding a new save option, creating a global dependency and causing a variability bug in libxml2 .
 1. defined(HTML) || defined(VALID)#if
 2. …
 3. xmlout = 0;static int
 4. #endif
 5. …
 6. parseAndPrintFile(…) {static void
 7. …
 8. (format)if
 9. saveOpts |= XML_SAVE_FORMAT;
+ 10. defined(HTML) || defined(VALID)#if
 11. (xmlout)if
 12. saveOpts |= XML_SAVE_AS_XML;
+ 13. #endif
 14. …
 15. }

+ Including line

Fig. 6. Removing the dependency to fix the bug in libxml2 .

Fig. 7. Interprocedural dependencies of different directions.
its severity, this bug remained undetected for more than one year.
This is because the problematic line of code is guarded by a macro
and is only accessible on Linux kernel versions 2.6.38 and up. On
older kernels, the code is innocuous. In other words, this variability

bug occurs only in configurations that exist on newer versions of
Linux kernel.

To verify the existence of an interprocedural depen-
dency in this code, we must check the calls to the function
ll_revalidate_nd . Although there are no calls to this function
in the Lustre code, we can find them in the Linux kernel. Fig. 10
shows such an indirect call in line 26. In this case, the field
d_op of struct dentry corresponds to the struct ll_d_ops
(Fig. 11). Therefore, dentry- > d_op- > d_revalidate points to
the function ll_revalidate_nd (see line 2 in Fig. 11). Notice
that, even though this dependency does not directly cause this
variability bug, it might delay the detection and further correction
of this bug. For instance, if there was no #ifdef encompassing
the reference to the parameter nd (see Fig. 8 , line 5), this prob-
lem would occur in every implementation, probably being more
noticeable.

As this call is in a mandatory section of code and we ac-
cess the parameter nd in an optional feature (see Fig. 8 ,

 1. ll_revalidate_nd(dentry *dentry,int struct
 2. nameidata *nd) {struct
 3. …
+ 4. LOOKUP_RCU#ifdef
+ 5. (nd->flags & LOOKUP_RCU)if
+ 6. -ECHILD;return
+ 7. #endif
 8. …
 9. }

+ Including line

Fig. 8. Adding an interprocedural dependency in Lustre .

32 I. Rodrigues et al. / Information and Software Technology 78 (2016) 27–52
 1. HAVE_IOP_ATOMIC_OPEN#ifdef
 2. ll_revalidate_nd(dentry *dentry,int struct
 3. flags) {unsigned int
 4. …
 5. }
 6. #else /* !HAVE_IOP_ATOMIC_OPEN */
 7. ll_revalidate_nd(dentry *dentry,int struct
 8. nameidata *nd) {struct
 9. …
 10. HAVE_DCACHE_LOCK#ifndef
- 11. (nd->flags & LOOKUP_RCU)if
+ 12. (nd && (nd->flags & LOOKUP_RCU))if
 13. -ECHILD;return
 14. #endif
 15. …
 16. }
 17. #endif /* HAVE_IOP_ATOMIC_OPEN */

+ Including line Removing line-

Fig. 9. Fixing the possible null pointer dereference in Lustre .
1. dentry *lookup_one_len(…) {struct
2. …
3. qstr this;struct
4. …
5. __lookup_hash(&this, base, NULL);return
6. }
7.
8. dentry *__lookup_hash(qstr *name,static struct struct
9. dentry *base, struct
10. nameidata *nd) { struct
11. …
12. dentry *dentry;struct
13. …
14. dentry = do_revalidate(dentry, nd);
15. …
16. }
17.
18. dentry *do_revalidate(dentry *dentry,static struct struct
19. nameidata *nd) { struct
20. status = d_revalidate(dentry, nd);int
21. …
22. }
23.
24. inline d_revalidate(dentry *dentry,static int struct
25. nameidata *nd) {struct
26. dentry->d_op->d_revalidate(dentry, nd);return
27. }

Fig. 10. Code snippet from Linux kernel .
1. dentry_operations ll_d_ops = { struct
2. .d_revalidate = ll_revalidate_nd,
3. .d_release = ll_release,
4. .d_delete = ll_ddelete,
5. .d_iput = ll_d_iput,
6. .d_compare = ll_dcompare,
7. };

Fig. 11. Code snippet from Lustre .
line 5), we have an mandatory-to-optional interprocedu-
ral dependency. The presence condition of nd at first was
LOOKUP_RCU (see Fig. 8 , line 4), but further modifications
changed the presence condition to (!HAVE_IOP_ATOMIC_OPEN
&& !HAVE_DCACHE_LOCK) (see Fig. 9 , lines 6 and 10).

Analogously to the intraprocedural and global dependencies, in
which the dependent variable initialization is a possible mainte-
nance point, we consider the function call as a maintenance point
regarding an interprocedural dependency, as its arguments initial-
ize the function formal parameters. Thus, a maintenance task in a

function call, such as an argument change, might impact the cor-
responding parameter use inside the callee function (the impact
point). In this example, we have a maintenance point at Fig. 10 ,
line 26, and an impact point in Fig. 8 , line 5. When such points
are in different files, or, in this case, in different projects, detecting
these dependencies can be more difficult.

Moreover, a function call argument may come from an-
other function. In Fig. 10 , the null problematic value comes
from function lookup_one_len , as an argument when call-
ing the function __lookup_hash (see line 5). This argument
initializes the parameter nd (line 10), which also passes it
through the function do_revalidate (see line 14) before fi-
nally reaching the function d_revalidate (see line 20). Func-
tion d_revalidate includes it as an argument of the call to
dentry- > d_op- > d_revalidate (see line 26). We refer to the
total of chained function calls that share the same data regard-
ing an interprocedural dependency as the dependency depth . In this
example, the maximum depth is four, as the null value (Fig. 10 ,
line 5) passes through four function calls before the function
ll_revalidate_nd references it in a different configuration.

I. Rodrigues et al. / Information and Software Technology 78 (2016) 27–52 33
Interprocedural dependencies with high depths might require
more attention from the developer. As there are more functions to
consider when maintaining a feature, such dependencies are easier
to miss, facilitating the introduction of bugs.
3.4. Summary

Bugs in general contribute to decrease developers productiv-
ity and impair software quality. Tasks like submitting bug re-
ports, triaging bugs, developing patches, committing changes to
the repository, validating patches, and updating documentation de-
mand time and effort [18,19] . Even if a simple bug could be easily
fixed, when developers have to deal with a great number of them,
the combined effort to perform all those tasks would raise signifi-
cantly.

Variability bugs—including the ones regarding feature
dependencies—are even more difficult to deal with, since they
occur only in specific configurations, possibly delaying their detec-
tion and subsequent fix. Developers themselves consider variability
bugs easier to introduce, harder to fix, and more critical than other
bugs [20] . Moreover, global and interprocedural dependencies are
particularly problematic, as different f eatures might share data
from a variable between different files. The bug in Section 3.3 is
rather complicated because it involves two different projects
(Lustre and Linux). The maintenance of a variable in a mandatory
section of Lustre causes a bug when Linux references it in an
optional feature. Fixing a bug like this involves coordinating teams
of developers of both projects.

This section introduces variability bugs related to three types of
feature dependencies. Although these motivating examples demon-
strate how feature dependencies might lead to variability bugs, we
cannot state that a dependency generates bugs by itself. Instead,
dependencies might become a problem when developers are not
aware of them. This way, it is necessary to learn more about such
dependencies in order to avoid or minimize potential problems
when maintaining software families. Note that these are code de-
pendencies. Although we expect them to often correspond to de-
pendencies specified in feature models, there is no guarantees that
the code dependencies actually match the feature model depen-
dencies. When they do not, we have the so called unsafe compo-
sition [21] . To assess how often these dependencies occur in prac-
tice, and what are their characteristics, we present next an empir-
ical study to answer research questions on this topic (Section 4).
4. Study settings

In this section we present the settings of our study to investi-
gate feature dependencies on program families. Our study covers
40 C industrial program families, varying from different domains
and sizes. We select these families inspired by previous work
[6–11] . To structure our research, we use the Goal, Question, and
Metrics [22] approach.
4.1. Goal, question, and metrics

With this empirical study we aim to investigate to what extent
feature dependencies occur in C program families, and learn more
about the characteristics of such dependencies. We also want to
replicate part of a previous work [8] , now using a more appropriate
tool to analyze C program families in a variability-aware manner.

We define the goals, questions, and metrics of this study as fol-
lows:

Goal 1 To assess the occurrence of different types of feature
dependencies in C program families

Question 1.1 How often do program families contain in-
traprocedural dependencies?
Metric 1.1.1 Number of functions with preprocessor direc-

tives (FDi)
Metric 1.1.2 Number of functions with intraprocedural de-

pendencies (FIntra)
Metric 1.1.3 Number of functions with intraprocedural de-

pendencies among the functions with preprocessor di-
rectives (FIntra / FDi)

Question 1.2 How often do program families contain global
dependencies?
Metric 1.2.1 Number of functions which use global vari-

ables (FGRef)
Metric 1.2.2 Number of functions with global dependen-

cies (FGlobal)
Metric 1.2.3 Number of functions with global dependen-

ciesamong the functions which use global variables
(FGlobal / FGRef)

Question 1.3 How often do program families contain inter-
procedural dependencies?
Metric 1.3.1 Number of functions with maintenance

points regarding interprocedural dependencies (FM)
Metric 1.3.2 Number of functions with impact points re-

garding interprocedural dependencies (FI)
Metric 1.3.3 Number of functions with either mainte-

nance or impact points regarding interprocedural de-
pendencies (FInter)

Goal 2 To investigate further characteristics of feature depen-
dencies
Question 2.1 How often do dependencies of different direc-

tions (mandatory-to-optional, optional-to-mandatory, and
optional-to-optional) occur?
Metric 2.1.1 Number of mandatory-to-optional dependen-

cies (M → O)
Metric 2.1.2 Number of optional-to-mandatory dependen-

cies (O → M)
Metric 2.1.3 Number of optional-to-optional dependencies

(O → O)
Question 2.2 What is the dependency depth distribution for

interprocedural dependencies?
Metric 2.2.1 Dependency depth (DD)

Goal 3 To compare results on intraprocedural feature depen-
dency detection using TypeChef with previous work based on
srcML
Question 3.1 How the results of the current study compare

with the previous ones?
Metric 3.1.1 Number of functions with intraprocedural de-

pendencies in the previous study
Metric 3.1.2 Number of functions with intraprocedural

dependencies in the current study
With Goal 1 we intend to verify how often different types of

feature dependencies (intraprocedural, global, and interprocedural)
exists in program families.

In the next three questions we express feature dependency oc-
currence as the number of functions with feature dependencies,
to be consistent with our previous work [8] . We also summarize
these results by reporting the mean, standard deviation, median
and interquartile range (IQR). This way, we can better estimate
how often families contain dependencies and what is the disper-
sion of each metric among the families.

To answer Question 1.1 , we count the number of functions with
preprocessor directives, such as #ifdef , #elif or #else , and

34 I. Rodrigues et al. / Information and Software Technology 78 (2016) 27–52
the number of functions with intraprocedural dependencies for
each family. These metrics allow us to calculate how often func-
tions with preprocessor directives have intraprocedural dependen-
cies.

To answer Question 1.2 , we count the functions with impact
points regarding global dependencies, that is, direct references to
global variables in a different f eature than its definition. We do
not consider global variable assignments as maintenance points
when they are inside a function, because we are unable to track
the dataflow of global variables across functions, as we shall see in
Section 5.7 .

To answer Question 1.3 , as interprocedural dependencies di-
rectly involves two functions, we count separately the number of
functions containing maintenance points and the number of func-
tions containing impact points regarding interprocedural depen-
dencies for each family. Notice that the same function may con-
tain both maintenance points and impact points, regarding dis-
tinct interprocedural dependencies, so these values may overlap.
We also count the number of functions containing either mainte-
nance points or impact points, to total how many functions con-
tribute to interprocedural dependencies.

With Goal 2 we aim to better understand the characteristics of
feature dependencies, in terms of directions and depths (in case of
interprocedural dependencies).

To answer Question 2.1 , we classify every dependency based
on its direction (mandatory-to-optional, optional-to-mandatory, or
optional-to-optional). Then we count the occurrences of dependen-
cies for each direction, grouping by type of dependency. We use
this metric in order to verify if some direction is particularly com-
mon for some type of feature dependency.

To answer Question 2.2 , we create a call graph [23] , having
functions as nodes, and function calls as arcs pointing the callee
function to the caller function. We also consider arguments place-
ment and the presence condition of each function call when cre-
ating the graph. We use the well-known depth-first search [24] al-
gorithm to traverse the graph. We make an adjustment in the al-
gorithm to allow revisiting nodes (but avoiding loops), in order to
track all possible paths (from the shortest to the longest) from ev-
ery node regarding functions with interprocedural dependencies.
This information is important to foresee situations where an ar-
gument in a function call may cause a problem due to an ex-
isting dependency later on the code. Also, answering this ques-
tion is important to better set up dataflow analysis tools, such as
Emergo [2] (see Section 7.1). Considering that every interprocedural
dependency may have many different paths, we present this data
as a distribution, so one can easily see the relative likelihood for
random dependency to have a given depth. Again, we summarize
these results by presenting the mean, standard deviation, median
and interquartile range (IQR). This way, we can better estimate the
depth of interprocedural dependencies and its dispersion among
the families.

Finally, with Goal 3 we plan to establish a comparative analysis
between the results of our current study and the results of our
previous study on intraprocedural dependencies.

To answer Question 3.1 , we use the data we gather in Ques-
tion 1.1 and compare it to the results of our previous study on fea-
ture dependencies, where we focused on intraprocedural depen-
dencies using a different tool, which do not properly support non-
disciplined annotations. By doing so, we intend to verify if previous
results still hold.

To better explain the metrics we compute, we refer to the code
snippet in Fig. 12 . We extract this code snippet from libssh , 16 a
multiplatform C library for SSH protocol implementations. The fig-

16 http://www.libssh.org/ .

ure depicts five functions from three different files, dh.c, packet.c ,
and packet1.c . These functions handle SSH cryptography and
packet sending over a SSH session. Function ssh_crypto_init
initializes the values for the global variables g and p . Func-
tion ssh_packet_send_unimplemented calls function
packet_send . Depending on the configuration regarding SSH
protocol version (WITH_SSH1 or !WITH_SSH1), packet_send
may call either packet_send1 or packet_send2 . The
code snippet also contains other four macros: HAVE_LIBZ
and WITH_LIBZ , both related to zlib , 17 a compression library;
HAVE_LIBGCRYPT , related to libgcrypt , 18 a cryptographic library;
and DEBUG_CRYPTO , for debugging purposes.

In the figure, there is an intraprocedural dependency in the
function packet_send2 regarding variable currentlen , which
is defined in a mandatory feature (see line 48) and later refer-
enced in an optional configuration (HAVE_LIBZ && WITH_LIBZ ,
see line 52). Thus, the direction of this dependency is mandatory-
to-optional.

There are two global variables, g and p , both declared in
a mandatory section of code (see lines 1 and 2) and refer-
enced multiple times within the function ssh_crypto_init .
We have global dependencies regarding both variables, as func-
tion ssh_crypto_init references them in an optional config-
uration (HAVE_LIBGCRYPT , see lines 10 − 12). The direction of
these global dependencies is also mandatory-to-optional.

In addition, notice that there are four functions involved
with interprocedural dependencies. Considering line 23 as a
maintenance point, we may impact lines 29 and 30 in
another function: packet_send . This happens due to the
data from the session variable that flows out the function
ssh_packet_send_unimplemented and flows into the func-
tion packet_send . As the impact points in packet_send are
in an optional configuration (WITH_SSH1), we have two interpro-
cedural dependencies involving both functions (as there are two
distinct pairs of a maintenance point and an impact point). The di-
rection of both dependencies is mandatory-to-optional. Notice that
the reference to variable session at line 33 does not result in a
dependency among features: both maintenance and impact points
are in the mandatory feature. Furthermore, considering line 30 as
another maintenance point, we may also impact line 40, implying
in one more interprocedural dependency. Its direction is optional-
to-optional, as both maintenance and impact points have different
(and not true) presence conditions. Finally, when considering line
33 as a maintenance point, we may impact line 52, resulting in
another mandatory-to-optional interprocedural dependency.

Regarding dependency depths, we track all paths
across functions to interprocedural dependencies. For in-
stance, we have two interprocedural dependencies involv-
ing functions ssh_packet_send_unimplemented and
packet_send . From ssh_packet_send_unimplemented
to packet_send thedepth is one. As we have two interpro-
cedural dependencies in these functions, we count this path
(ssh_packet_send_unimplemented → packet_send)
twice. Furthermore, we have another interprocedural dependency
involving functions packet_send and packet_send1 , and a
last one involving functions packet_send and packet_send2 .
In these dependencies, the maintenance points are within function
packet_send , at lines 30 and 33. In both cases, the value of the
argument of these function calls comes from another function:
packet_send_unimplemented . Hence, besides the obvious
paths packet_send → packet_send1 and packet_send
→ packet_send2 , both with a depth of one, we also

17 http://www.zlib.net/ .
18 http://www.gnu.org/software/libgcrypt/ .

http://www.libssh.org/
http://www.zlib.net/
http://www.gnu.org/software/libgcrypt/

I. Rodrigues et al. / Information and Software Technology 78 (2016) 27–52 35
1. static bignum g;
2. bignum p;static
3.
4. ssh_crypto_init(void) {int
5. …
6. g = bignum_new();
7. …
8. HAVE_LIBGCRYPT#ifdef
9. …
10. (p == NULL) {if
11. bignum_free(g);
12. g = NULL;
13. …
14. }
15. …
16. #endif
17. …
18. }
19.
20. int ssh_packet_send_unimplemented(…) {
21. r; int
22. …
23. r = packet_send(session);
24. …
25. }
26.
27. packet_send(ssh_session session) {int
28. WITH_SSH1#ifdef
29. (session->version == 1) { if
30. packet_send1(session); return
31. }
32. #endif
33. packet_send2(session);return
34. }
35.
36. WITH_SSH1#ifdef
37. packet_send1(ssh_session session) {int
38. …
39. DEBUG_CRYPTO#ifdef
40. ssh_print_hexa(…, ssh_buffer_get_begin(session->out_buffer), …);
41. #endif
42. …
43. }
44. #endif
45.
46. packet_send2(ssh_session session) {static int
47. …
48. uint32_t currentlen = …;
49. …
50. defined(HAVE_LIBZ) && defined(WITH_LIBZ)#if
51. …
52. currentlen = buffer_get_rest_len(session->out_buffer);
53. …
54. #endif
55. …
56. }

Fig. 12. Code snippet from libssh .
consider packet_send_unimplemented → packet_send
→ packet_send1 and packet_send_unimplemented
→ packet_send → packet_send2 , with a depth of two.
In short, the average dependency depth for this example is
(1 + 1 + 1 + 1 + 2 + 2) / 6 = 1 . 33 .

Table 1 summarizes the metrics we compute for this example.
4.2. Subject selection

We analyze 40 program families written in C, ranging from 2,
681 to 288, 654 lines of code. Although we do not systematically
target diversity, we have some in our set of families [25] since our
selection covers different domains, such as web servers, database
systems, text editors, and programming languages. We select these
subject systems inspired by previous work [6–11] . Although we
want to compare our results with results from previous work [8] ,
our set of families is not exactly the same. In part because previ-

ous work included some Java families, for instance, and we focus
on C families in this study. Another reason is that we want to ana-
lyze new families and discover whether previous results still apply
to them. Moreover, although our set of families does not guaran-
tee high representativeness [25] , we include some well-known and
mature program families used in industrial practice. We present
more details on each family in Table 2 .
4.3. Instrumentation

To compute the metrics we consider, we rely on TypeChef [12] , a
variability-aware type checking utility, to create an Abstract Syntax
Tree (AST) from each source file. TypeChef can parse C code con-
taining #ifdef directives without generating all possible variants;
instead, it creates an AST that preserves all variability information,
having each preprocessor directive as a node in the tree. Previous
studies [6,8,11] use srcML [26] to create ASTs represented in the

36 I. Rodrigues et al. / Information and Software Technology 78 (2016) 27–52
Table 1
Metrics summary for the code snippet in Fig. 12 . We do not consider Goal 3 and its question and metrics, due to this
being a illustrative example.

Goal Question Metric Value
Goal 1 (Dependencies occurrence) Question 1.1 (Intraprocedural) Metric 1.1.1 (FDi) 4 (80%)

Metric 1.1.2 (FIntra) 1 (20%)
Metric 1.1.2 (FIntra / FDi) 1 (25%)

Question 1.2 (Global) Metric 1.2.1 (FGRef) 1 (20%)
Metric 1.2.2 (FGlobal) 1 (20%)
Metric 1.2.3 (FGlobal / FGRef) 1 (100%)

Question 1.3 (Interprocedural) Metric 1.3.1 (FM) 2 (40%)
Metric 1.3.2 (FI) 3 (60%)
Metric 1.3.3 (FIntra) 4 (80%)

Goal 2 (Further characteristics) Question 2.1 (Direction) Metric 2 .1.1 (M → O) 7 (87 .5%)
Metric 2 .1.2 (O → M) 0 (0%)
Metric 2 .1.3 (O → O) 1 (12 .5%)

Question 2.2 (Depth) Metric 2.2.1 (DD) 1.33 ± 0.47
Table 2
Subject characterization.

Family Version Application domain LOC Functions Files TD
apache 2 .4.3 Web server 144,768 3910 362 1 .51 ± 1.17
atlantis 0 .0.2.1 Operating system 2681 117 103 1 .25 ± 0.52
bash 2 .01 Command language interpreter 44,824 1647 138 1 .80 ± 1.10
bc 1 .03 Calculator 5177 166 27 1 .24 ± 0.43
berkeley db 4 .7.25 Database system 185,111 3468 580 1 .39 ± 0.82
bison 2 .0 Parser generator 24,325 684 129 1 .70 ± 1.06
cherokee 1 .2.101 Web server 63,109 1838 346 1 .57 ± 1.08
clamav 0 .97.6 Antivirus 107,548 2072 377 1 .68 ± 1.40
cvs 1 .11.21 Revision control system 76,125 1122 236 1 .45 ± 0.87
dia 0 .96.1 Diagramming software 28,074 814 132 1 .06 ± 0.51
expat 2 .1.0 XML library 17,103 543 54 1 .70 ± 1.01
flex 2 .5.35 Lexical analyzer 16,501 277 41 1 .76 ± 1.27
fvwm 2 .4.15 Window manager 102,301 2141 270 1 .27 ± 0.76
gawk 3 .1.4 GAWK interpreter 43,070 745 140 1 .86 ± 1.17
gnuchess 5 .06 Chess engine 9293 217 37 1 .86 ± 1.14
gnuplot 4 .6.1 Plotting tool 79,557 1861 152 1 .90 ± 1.49
gzip 1 .2.4 File compressor 5809 114 36 1 .46 ± 0.71
irssi 0 .8.15 IRC client 51,356 2853 308 1 .20 ± 0.64
kin 0 .5 Database system 64,120 1248 119 1 .31 ± 0.79
libdsmcc 0 .6 DVB library 5453 100 30 1 .39 ± 0.57
libieee 0 .2.11 IEEE standards for VHDL library 5323 197 27 2 .30 ± 1.98
libpng 1 .0.60 PNG library 44,828 476 61 3 .16 ± 1.55
libsoup 2 .41.1 HTTP library 40,061 1475 178 1 .01 ± 0.10
libssh 0 .5.3 SSH library 28,015 943 125 1 .64 ± 0.94
libxml2 2 .9.0 XML library 234,934 6009 162 2 .11 ± 1.51
lighttpd 1 .4.30 Web server 38,847 1004 132 1 .34 ± 0.90
lua 5 .2.1 Programming language 14,503 837 59 1 .80 ± 1.71
lynx 2 .8.7 Web browser 80,334 1448 117 1 .92 ± 1.21
m4 1 .4.4 Macro expander 10,469 216 26 2 .21 ± 1.41
mpsolve 2 .2 Mathematical software 10,278 411 41 1 .27 ± 0.45
mptris 1 .9 Game 4988 99 29 1 .73 ± 1.00
prc-tools 2 .3 C/C++ library for palm OS 14,371 369 142 1 .19 ± 0.49
privoxy 3 .0.19 Proxy server 29,021 478 67 1 .75 ± 1.03
rcs 5 .7 Revision control system 11,916 299 28 1 .96 ± 1.27
sendmail 8 .14.6 Mail transfer agent 91,288 861 243 1 .76 ± 1.08
sqlite 3 .7.15.3 Database system 94,113 2612 134 1 .72 ± 0.99
sylpheed 3 .3.0 E-mail client 83,528 2597 218 1 .34 ± 1.36
vim 7 .3 Text editor 288,654 5600 178 2 .31 ± 1.42
xfig 3 .2.3 Vector graphics editor 70,493 1689 192 2 .15 ± 2.20
xterm 2 .9.1 Terminal emulator 50,830 989 58 2 .05 ± 1.72

LOC : Number of lines of code; TD : Average number of macros per macro expression (tangling degree).
XML format, but this tool usually fails when handling code with
non-disciplined annotations [11] . Thus, it generates ill-formed XML
files as a result.

For instance, Fig. 13 presents a code snippet containing non-
disciplined annotations. In the figure, the statement beginning at
line 2 spans through lines 4 or 6, depending on macro A . So the
full statement can be either int x = 2 + 3 or int x = 2 +
4 . If we use srcML to generate an AST from this code, we would
get an ill-formed XML, as shown in Fig. 14 . The XML depicted

in this figure could not be parsed, since some of its tags do not
nest correctly. More specifically, in the code snippet we have an
#ifdef clause (see Fig. 13 , line 3) followed by an #else clause
(see Fig. 13 , line 5). After srcML translates such directives to XML
tags, we get a < cpp:ifdef > tag (see Fig. 14 , lines 19–23) and
a misaligned < cpp:else > tag (see Fig. 14 , lines 30–33), posi-
tioned after the closing tag < /decl_stmt > (see Fig. 14 , line 29).

Since TypeChef supports such non-disciplined annotations with-
out outputting invalid results, we believe that it is a better

I. Rodrigues et al. / Information and Software Technology 78 (2016) 27–52 37
1. f(){void
2. x = 2int
3. A#ifdef
4. + 3;
5. #else
6. + 4;
7. #endif
8. }

Fig. 13. Code snippet containing non-disciplined annotations. Notice that #ifdef
and #else directives surround only part of the statement.

1. <function>
2. <type>
3. f<name> </name>
4. </type>
5. test<name> </name>
6. ()<parameter_list> </parameter_list>
7. <block>
8. {
9. <decl_stmt>
10. <decl>
11. <type>
12. int<name> </name>
13. </type>
14. x<name> </name>
15. <init>
16. =
17. <expr>
18. 2
19. <cpp:ifdef>
20. #
21. ifdef<cpp:directive> </cpp:directive>
22. A<name> </name>
23. </cpp:ifdef>
24. + 3
25. </expr>
26. </init>
27. </decl>
28. ;
29. </decl_stmt>
30. <cpp:else>
31. #
32. else<cpp:directive> </cpp:directive>
33. </cpp:else>
34. <expr_stmt>
35. + 4<expr> </expr>
36. ;
37. </expr_stmt>
38. <cpp:endif>
39. #
40. endif<cpp:directive> </cpp:directive>
41. </cpp:endif>
42. }
43. </block>
44. </function>

Fig. 14. Ill-formed XML as generated by srcML due to a code with non-disciplined
annotations. Notice that cpp: tags do not nest accordingly.
solution for this task. Apart from TypeChef and srcML , other tools
can generate ASTs from C source code files. Clang ’s APIs 19 and
Eclipse CDT Parser , 20 for instance, can parse C code and extract an
AST from it. However, such tools do not perform variability-aware
analysis. Thus, we would have to define every possible combina-
tion of macros to cover all the configuration space, rendering our
analysis unfeasible. SuperC [27] , on the other hand, could be an al-
ternative, since it preserves variability information in the AST. Nev-
ertheless, since our previous studies were focused on error detec-

19 http://clang.llvm.org .
20 https://eclipse.org/cdt/ .

tion [7,28] , we have been using TypeChef also due to its type check-
ing capabilities, which SuperC lacks.

In this work, we use TypeChef version 0.3.5 to create the ASTs
for all program families source code files. We develop a tool to au-
tomate both ASTs creation and dependencies computation. We use
Java SE 7 to implement this tool.
4.4. Operation

We perform the empirical study using a 2 GHz quad-core In-
tel Core i7-2630QM with 8 GB of RAM, running MS Windows 7
Home Premium SP1 64-bit. We divide this study in two parts:
dependency identification and dependency depth analysis. In the
first part of the study, our tool analyzes the ASTs generated for
all program families source code files, one at a time, searching
for intraprocedural, global, and interprocedural dependencies in all
functions of each family. We simplistically describe this strategy in
Algorithm 1 . Notice that we present a simpler version of the ac-
Algorithm 1 General algorithm for dependency search

ASTS ← set of all abstract syntax trees of a program family
FUNCTIONS ← set of all function definitions within the current AST
VARIABLES ← set of all variables used within the current function
CALLS ← set of all function calls to the current function
USES(v) ← function that returns the set of all uses of the variable v
DEFINITIONS(v) ← function that returns the set of all definitions of the
variable v
IS_LOCAL(v) ← function that returns true , if the variable v is a local
variable; false , otherwise
IS_GLOBAL(v) ← function that returns true , if the variable v is a global
variable; false , otherwise
IS_PARAMETER(v) ← function that returns true , if the variable v is a
function parameter; false , otherwise
PC(s) ← function that returns the presence condition of statement s

1: for each ast in ASTS do
2: for each function in FUNCTIONS do
3: for each variable in VARIABLES do
4: for each use in USES(variable) do
5: if IS_PARAMETER(variable) then
6: for all call in CALLS do
7: if PC(use) ̸ = PC(call) then
8: — There is an interprocedural dependency
9: end if

10: end for
11: else ◃ The variable is either local or global
12: for each definition in DEFINITIONS(variable) do
13: if PC(definition) ̸ = PC(use) then
14: if IS_LOCAL(variable) then
15: — There is an intraprocedural dependency
16: else if IS_GLOBAL(variable) then
17: — There is a global dependency
18: end if
19: end if
20: end for
21: end if
22: end for
23: end for
24: end for
25: end for
tual algorithm, to better explain its operation. Thus, it lacks any
optimizations in favor of understandability.

In the algorithm we traverse all ASTs for a program family,
each corresponding to a source file. For each AST, we look for
function definitions, or FunctionDef nodes. For every function, we
get all variables being used within the function, represented by Id
nodes (excluding those non-related to variables, belonging to func-
tions or constants, for instance). For each variable, we search for
all of its uses within the function, or all Id nodes with the same
name. Then, we check the variable scope. If it is a function pa-
rameter (that is, there is an Id node inside a ParameterDeclarationD
node, for instance), we get all function calls (FunctionCall nodes)
in all ASTs, comparing the presence condition of each function call
with the presence condition of the variable use. Every time such

http://clang.llvm.org
https://eclipse.org/cdt/

38 I. Rodrigues et al. / Information and Software Technology 78 (2016) 27–52

ap
ac

he
at

la
nt

is
ba

sh bc
be

rk
el

ey
 d

b
bi

so
n

ch
er

ok
ee

cl
am

av cv
s

di
a

ex
pa

t
fle

x
fv

w
m

ga
w

k
gn

uc
he

ss
gn

up
lo

t
gz

ip
irs

si ki
n

lib
ds

m
cc

lib
ie

ee
lib

pn
g

lib
so

up
lib

ss
h

lib
xm

l2
lig

ht
tp

d
lu

a
ly

nx m
4

m
ps

ol
ve

m
pt

ris
pr

c−
to

ol
s

pr
iv

ox
y

rc
s

se
nd

m
ai

l
sq

lit
e

sy
lp

he
ed vi
m

xf
ig

xt
er

m

D
ep

en
de

nc
y

oc
cu

rr
en

ce
 (%

)

0

10

20

30

40
Directives (FDi)
Dependencies (FIntra)

Fig. 15. Percentage of functions with preprocessor directives and intraprocedural dependencies. Notice that, for most families, more than half of functions with directives
also have dependencies.
presence conditions differ, we have an interprocedural dependency.
Now, if the variable is not a function parameter, it must be either
a local or global variable. So, we get all variable definitions (dec-
larations, assignments, and increments/decrements, including var-
ious different nodes) inside the current function, comparing their
presence condition with the presence condition of the variable use.
Once more, every time a definition and a posterior use have dif-
ferent presence conditions, we have a dependency. This time, this
dependency can be intraprocedural or global, depending on the
variable scope (that is, if its declaration is inside or outside the
function). Obviously, we do not consider cases where the presence
condition of a variable definition and of its use results in a contra-
diction when combined. For instance, if a variable has a presence
condition A for its definition and !A for its use, we would not have
a feature dependency.

In the second part of the study, our tool analyzes each func-
tion call which is a maintenance point to an interprocedural de-
pendency to find out the maximum dependency depth. To do so,
we check whether the function call argument comes from another
function, thus being a parameter of the current function. If so, we
then analyze the caller function, in a recursive manner.

Next, we interpret and discuss the results of our empirical study
to assess fine-grained feature dependencies.
5. Results and discussion

In this section, we answer the research questions based on the
results of our empirical study and present the threats to validity.
All results are available at the companion web site. 21
5.1. Question 1.1: how often do program families contain
intraprocedural dependencies?

To answer this question, we use the number of functions with
preprocessor directives (FDi) and the number of functions with in-
traprocedural dependencies (FIntra) . Fig. 15 shows a bar chart with
FDi and FIntra for all families, expressed as a percentage of the to-
tal of functions we analyze. Notice that the bars in the chart are
superimposed, so the height of FDi also includes the height for FIn-
tra . This way, we can also get an idea on how many of the func-
tions with directives have intraprocedural dependencies, by com-
paring both bars for a given family. According to the chart, both

21 http://www.iranrodrigues.com.br/ist2016 .

metrics differ considerably depending on the family. For instance,
only 1.36% of libsoup functions have preprocessor directives (FDi),
while Vim have preprocessor directives in 37.25% of its functions.
Following the convention “average ± standard deviation”, our re-
sults show that 10.09% ± 8.74% of the functions of all families have
preprocessor directives within. However, due to the great variation
and the heterogeneity of data distribution for this and the next
metrics, we also opt to report results using a robust measure of
central tendency and statistical dispersion. The median for FDi in
all families is 7.67%, while its interquantile range (IQR) is 10.56%.

Regarding FIntra , while mpsolve has no intraprocedural depen-
dencies, this metric reaches 17.04% on libxml2 , and 18.77% on Vim .
Considering all families, there are intraprocedural dependencies in
5.79% ± 5.53% of their functions. The median for FIntra over all
families is 4.03%, while its IQR is 5.94%, characterizing a high dis-
persion once more.

Notice that the values for FIntra are rather low because we con-
sider the number of functions with dependencies over the total of
functions. If we consider only the number of functions with direc-
tives, this number grows substantially. For instance, mptris family
has intraprocedural dependencies in 14.14% of its functions. How-
ever, 82.35% of its functions with preprocessor directives also have
intraprocedural dependencies. So, by dividing the total of functions
with intraprocedural dependencies by the total of functions with
preprocessor directives (FIntra/FDi) we have a better estimate of
the dependency occurrence, because only functions with directives
can possibly have intraprocedural dependencies. This way, when
maintaining code with preprocessor directives, the likelihood of
finding a dependency increases. That is, the probability of finding
intraprocedural dependencies randomly picking a function, for in-
stance, is greater if we consider only the functions with prepro-
cessor directives than if we consider all functions for a program
family. Our data shows that 51.44% ± 17.77% of the functions with
directives also have intraprocedural dependencies. The median for
FIntra/FDi is 54.87% and its IQR is 15.11%. Therefore, intraprocedu-
ral dependencies are rather common in the product families we
analyze.

Table A.1 shows all the values for FDi, FIntra, and FDi/FIntra for
all the families we analyze.
5.2. Question 1.2: how often do program families contain global
dependencies?

To answer this question we use the number of functions ref-
erencing global variables (FGRef) and the number of functions with

http://www.iranrodrigues.com.br/ist2016

I. Rodrigues et al. / Information and Software Technology 78 (2016) 27–52 39

ap
ac

he
at

la
nt

is
ba

sh bc
be

rk
el

ey
 d

b
bi

so
n

ch
er

ok
ee

cl
am

av cv
s

di
a

ex
pa

t
fle

x
fv

w
m

ga
w

k
gn

uc
he

ss
gn

up
lo

t
gz

ip
irs

si ki
n

lib
ds

m
cc

lib
ie

ee
lib

pn
g

lib
so

up
lib

ss
h

lib
xm

l2
lig

ht
tp

d
lu

a
ly

nx m
4

m
ps

ol
ve

m
pt

ris
pr

c−
to

ol
s

pr
iv

ox
y

rc
s

se
nd

m
ai

l
sq

lit
e

sy
lp

he
ed vi
m

xf
ig

xt
er

m

D
ep

en
de

nc
y

oc
cu

rr
en

ce
 (%

)

0

10

20

30

40

50

60

70
Using globals (FGRef)
Dependencies (FGlobal)

Fig. 16. Percentage of functions referencing global variables and with global dependencies. Notice that the occurrence of global dependencies is relatively low.
global dependencies (FGlobal) . Fig. 16 shows a bar chart with su-
perimposed bars representing FGRef and FGlobal . Notice that, once
more, the results vary vastly depending on the family we analyze.
Some families do not make much use of global variables. Lua , for
instance, has only 4.06% of its functions referencing global vari-
ables (FGRef). On the other hand, gzip has a FGRef of 68.42%, mean-
ing that the majority of its functions references global variables.
Our results show that 27.24% ± 14.42% of the functions do refer-
ence global variables. Median and IQR for FGRef are, respectively,
26.93% and 19.81%.

The number of functions with global dependencies (FGlobal)
also vary across the families we analyze. According to the chart,
five of the families do not have any global dependencies: Atlantis,
bc, Expat, libsoup , and Lua . Families with the highest values for
FGlobal include Vim (15.89%) and libxml2 (15.14%). Considering all
families, 3.09% ± 3.95% of the functions have global dependencies.
Median and IQR are 1.52% and 2.08%, respectively. However, these
percentages relate to the total of functions. For instance, from all
Vim functions, 15.89% have global dependencies. We cannot restrict
this number to consider only functions with preprocessor direc-
tives, as we do in Section 5.1 , since global dependencies might oc-
cur even in functions without such directives.

Now, if we consider only functions which reference global vari-
ables, we can better estimate the global dependency occurrence.
For instance, mptris has global dependencies in 8.08% of its func-
tions. But, when considering only the functions which reference
global variables, 42.11% of them have global dependencies. We find
this value by diving the number of functions with global depen-
dencies by the number of functions referencing global variables
(FGlobal / FGRef). Our results show that 11.90% ± 12.20% of the func-
tions which refer to global variables also have global dependencies.
Median and IQR for the FGlobal / FGRef ratio are 7.65% and 13.19%,
revealing the high dispersion of data. Moreover, we conclude that
this type of dependency is less common in the families we an-
alyze. Nevertheless, this value is a lower bound. As we do not
track the dataflow of global variables across functions, we cannot
consider all possible maintenance points of a global variable, such
as assignments or increments/decrements, that may happen inside
functions. We further discuss this limitation in Section 5.7 .

Moreover, we cannot neglect such dependencies, because de-
pending on the family, the total of global dependencies may be
reasonably higher. Besides, Section 3.2 shows that this type of de-
pendency can be as problematic as any other dependency. Addi-
tionally, such dependencies might be hidden as different files can
refer to the same global variable.

Table A.2 shows the values for FGRef, FGlobal and FGRef/FGlobal
for all families.
5.3. Question 1.3: how often do program families contain
interprocedural dependencies?

To answer this question, we use the number of functions with
maintenance points regarding interprocedural dependencies (FM) , the
number of functions with impact points regarding interprocedural de-
pendencies (FI) , and the number of functions with interprocedural de-
pendencies (FInter) . As an interprocedural dependency involves two
functions, one containing a maintenance point and the other con-
taining an impact point, we refer to functions with interprocedural
dependencies (FInter) as the functions containing either a mainte-
nance point or an impact point regarding interprocedural depen-
dencies. Fig. 17 shows a bar chart with grouped bars representing
FM and FI , and dots over the bars representing FInter for the fam-
ilies we analyze. Not surprisingly, again these values vary signifi-
cantly across the families. FM , for instance, ranges from 0.12% to
56.69%, in Lua and Privoxy , respectively. Considering the families
we analyze, 18.96% ± 16.62% of the functions have maintenance
points regarding interprocedural dependencies. In other words, this
is the number of functions containing function calls that lead to
interprocedural dependencies. Median and IQR for FM are, respec-
tively, 12.81% and 23.56%, denoting its high variation.

In most families we analyze, FI is lower than FM , with some
exceptions. Lua has the same value for FM and FI : 0.12%, which is
also the smallest value for the FI in all families. The highest FI is
in libpng , where 42.65% of its functions contain impact points re-
garding interprocedural dependencies. Our data reveal that 12.14%
± 10.59% of the functions references dependent variables in inter-
procedural dependencies. Median for FI is 8.98%, while its IQR is
11.57%. This means that FI varies slightly less than FM in the fami-
lies we analyze.

According to Fig. 17 , the family with the lowest FInter is once
again Lua , with 0.24% of its functions with interprocedural depen-
dencies. On the other hand, Vim is the family with the highest
number of functions with interprocedural dependencies: 67.34%.
Considering all families, the average number of functions with in-
terprocedural dependencies is 25.98% ± 19.99%. Median and IQR
for FInter are 20.49% and 30.85%, showing that this metric has the
highest variation among all others regarding dependency occur-
rence.

All these metrics consider all the functions for each family.
Once more, we cannot restrict them to consider only the functions

40 I. Rodrigues et al. / Information and Software Technology 78 (2016) 27–52

ap
ac

he
at

la
nt

is
ba

sh bc
be

rk
el

ey
 d

b
bi

so
n

ch
er

ok
ee

cl
am

av cv
s

di
a

ex
pa

t
fle

x
fv

w
m

ga
w

k
gn

uc
he

ss
gn

up
lo

t
gz

ip
irs

si ki
n

lib
ds

m
cc

lib
ie

ee
lib

pn
g

lib
so

up
lib

ss
h

lib
xm

l2
lig

ht
tp

d
lu

a
ly

nx m
4

m
ps

ol
ve

m
pt

ris
pr

c−
to

ol
s

pr
iv

ox
y

rc
s

se
nd

m
ai

l
sq

lit
e

sy
lp

he
ed vi
m

xf
ig

xt
er

m

D
ep

en
de

nc
y

oc
cu

rr
en

ce
 (%

)

0

10

20

30

40

50

60

70
Dependencies (FInter)
Maintenance points (FM)
Impact points (FI)

Fig. 17. Percentage of functions with maintenance points, impact points, and interprocedural dependencies. Notice the high variation of FInter .

Fig. 18. Dependency occurrence distributions by type.
with preprocessor directives. The reason is that both maintenance
points and impact points can be in a mandatory feature, provided
that their counterparts are in optional features. Nevertheless, we
conclude that interprocedural dependencies are reasonably com-
mon in the families we analyze. This may be a problem if devel-
opers are not aware of the existence of such dependencies in the
code they maintain. Problems regarding interprocedural dependen-
cies may involve more than one file, or even different program
families (see Section 3.3), making maintenance tasks in the pres-
ence of such dependencies rather risky.

Table A.3 shows the values for FM, FI , and FInter for all the fam-
ilies we analyze.

To better compare intraprocedural, global, and interprocedu-
ral dependency occurrence in all families, we plot data regarding
FIntra/FDi, FGlobal/FGRef , and FInter using both an adjusted box-
plot [29] (Fig. 18 a) and a beanplot [30] (Fig. 18 b) chart. While the
former clearly shows the values for the first and third quartiles
(the bottom and the top of the box, respectively) and the median
(the band inside the box), the latter shows variation in between
the values, alongside the average for each bean (the line inside
the bean) and the overall average (the dotted line). Both charts
show that intraprocedural dependency is the most common type
of dependency, which has also an almost-symmetrical distribution.
Interprocedural dependency follows intraprocedural as the second
most common type. Besides, interprocedural dependency has the
greatest variation, with the highest boxplot. Global dependency is
relatively uncommon, as its 75th percentile is 15.58%, meaning that
in 75% of the families its occurrence is less than or equal to 15.58%.

5.4. Question 2.1: how often do dependencies of different directions
(mandatory-to-optional, optional-to-mandatory, and
optional-to-optional) occur?

To answer this question, we use the number of mandatory-
to-optional dependencies (M → O) , the number of optional-to-
mandatory dependencies (O → M) , and the number of optional-to-
optional dependencies (O → O) .

Fig. 19 shows the distribution of dependency directions accord-
ing to their types using a beanplot chart. Notice that the distri-
bution of intraprocedural dependencies resembles the distribution
of global dependencies, with pretty similar averages (the horizon-
tal lines) and estimated density (the bean shape) for each bean.
In both types, most of dependencies are mandatory-to-optional
(M → O), followed by optional-to-optional (O → O) dependen-
cies. Only few are optional-to-mandatory (O → M). These results
mean that developers create most of intraprocedural and global
dependencies by defining local and global variables in a manda-
tory feature, and referencing them in an optional feature. In such
cases, these dependencies do not cause build errors (regarding un-
declared variables), but they can trigger compilation warnings re-
garding unused variables, which is a minor problem. We can also
infer that in such types of dependency, when developers define
variables in optional features, they reference such variables much
more in another optional feature than in a mandatory one.

One might wonder if this situation can cause compilation er-
rors. However, this depends on a number of factors, such as con-
figuration parameters or the family feature model, for instance. To

I. Rodrigues et al. / Information and Software Technology 78 (2016) 27–52 41

Fig. 19. Dependency directions distribution by type.
1. HAVE_LIBGCRYPT#ifdef
2. …
3. gcry_sexp_t dsa = NULL;
4. …
5. defined HAVE_LIBCRYPTO#elif
6. DSA *dsa = NULL;
7. …
8. BIO *bio = NULL;
9. #endif
10. …
11. HAVE_LIBCRYPTO#ifdef
12. (bio == NULL) {if
13. …
14. }
15. #endif
16. …
17. privkey->dsa_priv = dsa;

Fig. 20. Code snippet from libssh .
better explain this, we refer to the code snippet in Fig. 20 . This
code contains intraprocedural dependencies regarding variables
dsa and bio . The variable dsa has two definitions. The presence
condition of its first definition (see line 3) is HAVE_LIBGCRYPT .
The presence condition of its second definition (see line 6) is
!HAVE_LIBGCRYPT && HAVE_LIBCRYPTO . Despite such defini-
tions occurring only in optional features, the variable dsa is ref-
erenced in a mandatory section of the code (see line 17). If we
do not define either HAVE_LIBGCRYPT or HAVE_LIBCRYPTO we
would have an undefined variable error. Now, look at bio defini-
tion at line 8. Its presence condition is !HAVE_LIBGCRYPT &&
HAVE_LIBCRYPTO . This variable is later referenced at line 12,
in a different presence condition: HAVE_LIBCRYPTO . Now, we
would face a similar compilation error if we define both macros
at once. In this case, libssh configure step prevents the occur-
rence of such errors, ensuring that either HAVE_LIBGCRYPT or
HAVE_LIBCRYPTO is available [7] .

The distribution of interprocedural dependencies is very differ-
ent (see Fig. 19). Regarding interprocedural dependencies, optional-
to-mandatory is the most common direction, followed closely
by mandatory-to-optional. Optional-to-optional dependencies are
rather uncommon. These results show that developers introduce
the majority of interprocedural dependencies by calling functions
from optional features which reference their parameters in a
mandatory feature. Besides, the opposite situation, that is, calling a
function from a mandatory feature which references its parameters
in optional features, is also common.
5.5. Question 2.2: what is the dependency depth distribution for
interprocedural dependencies?

Fig. 21 shows an adjusted beanplot summarizing the depen-
dency depths for program families. According to the figure, bc,
Flex , and MPSolve do not have interprocedural dependencies with

a depth greater than one. In such dependencies, functions share
data directly from the caller function to the callee function. On
the other hand, Berkeley DB, libxml2 , and xterm have relatively high
values for their dependency depths. The highest outlier for Berke-
ley DB , for instance, is 23, meaning that this family shares data
across 23 functions before reaching an impact point of a particular
interprocedural dependency. Notice that the distribution of depen-
dency depths for Lua has even higher values, with depths as high
as 29. However, our results for Lua are still indefinite. This particu-
lar family has a very high number of chained functions, which our
tool cannot handle in our current equipment, due to memory con-
straints. Therefore, we limit the maximum number of paths of the
call graph for Lua functions, thus obtaining a lower bound for the
maximum depth.

Fig. 23 depicts individual histograms of dependency depths
for each family we analyze, showing more detail on dependency
depths distributions. In such charts, the vertical dashed line indi-
cates the average depth in the family. While most of families have
the majority of interprocedural dependencies with a depth of one,
some histograms look like a bell-shaped curve. Take libxml2 as an
example: most of its dependencies have depths above 10, while
few have a depth of one. Thus, although most of interprocedural
dependencies have a depth of one, there is no single pattern that
fits into all the families we analyze.

Fig. 22 shows a adjusted boxplot summarizing all the depths for
the interprocedural dependencies of all the families we analyze.
According to the chart, the 25th and 75th percentile are, respec-
tively, 6 and 12. Thus, half of the paths to interprocedural depen-
dencies have depths between 6 and 12. However, the other half of
paths have depths between 1 and 6, or above 12, up to 29, mean-
ing that this metric also varies greatly. Considering all families, the
dependency depth is 8.69 ± 4.11. Median and IQR are, respectively,
9 and 6.

High values for dependency depths may hinder developer work
when maintaining such chained functions, especially when the de-
veloper is unaware of the existence of those dependencies. In these
cases, modifying a variable do not impact only the current func-
tion, but all the functions that use that variable from that point on.
Moreover, the greater the depth, the harder it is for the developer
detect the dependency, therefore, it becomes easier to introduce a
bug. Introducing a bug in such way may hamper its posterior cor-
rection, since it may be difficult to trace it back to the source of
the problem.

Table A.4 summarizes the dependency depths for all interpro-
cedural dependencies we collect.
5.6. Question 3.1: how the results of the current study compare with
the previous ones?

To answer this question, we compare the number of in-
traprocedural feature dependencies we obtain in this work with

42 I. Rodrigues et al. / Information and Software Technology 78 (2016) 27–52

ap
ac

he
at

la
nt

is
ba

sh bc
be

rk
el

ey
 d

b
bi

so
n

ch
er

ok
ee

cl
am

av cv
s

di
a

ex
pa

t
fle

x
fv

w
m

ga
w

k
gn

uc
he

ss
gn

up
lo

t
gz

ip
irs

si ki
n

lib
ds

m
cc

lib
ie

ee
lib

pn
g

lib
so

up
lib

ss
h

lib
xm

l2
lig

ht
tp

d
lu

a
ly

nx m
4

m
ps

ol
ve

m
pt

ris
pr

c−
to

ol
s

pr
iv

ox
y

rc
s

se
nd

m
ai

l
sq

lit
e

sy
lp

he
ed vi
m

xf
ig

xt
er

m

0

5

10

15

20

25

30
D

ep
en

de
nc

y
de

pt
h

Fig. 21. Dependency depth distribution in the program families.
the number of such dependencies reported in our previous
work [8] .

Our current study has 17 families in common with the previ-
ous study, so we can establish a direct comparison among these
families: Apache, Berkeley DB, Cherokee, ClamAV, Dia, gnuplot, Irssi,
libxml2, lighttpd, Lynx, Privoxy, Sendmail, SQLite, Sylpheed, Vim, Xfig ,
and xterm .

Both studies also use similar metrics to gather information
regarding intraprocedural dependencies. For instance, both stud-
ies present intraprocedural dependency occurrence as the ratio of
the number of functions with intraprocedural dependencies to the
number of functions with preprocessor directives. This way, we
now compare the values of these metrics across the two studies.

Fig. 24 b shows a beanplot featuring the distribution of the num-
ber of functions with preprocessor directives on each family. The
left side of the bean shows our current results, while the right
side of the bean shows results from previous work. Although the
overall shape of the bean is nearly symmetrical, notice that its
left side stretches upwards beyond its right side, meaning that in
our current study we have more functions with dependencies. This
is because our previous study did not account for functions with
non-disciplined annotations, due to limitations of srcML . Now that
we consider such functions, we obtain a slightly higher number of
functions with preprocessor directives. Considering the 17 families
both studies have in common, our previous study reports prepro-
cessor directives in 12.25% ± 7.63% of the functions, with a me-
dian of 10.64% and an IQR of 9.16%. Our current results show that
there are preprocessor directives in 13.23% ± 10.00% of such fam-
ilies, with values for median and IQR of 11.01% and 9.28%, respec-
tively.

Fig. 24 a shows a beanplot with distribution of the number
of functions with intraprocedural dependencies on each family.
Once more, the left side of the bean shows results from our cur-
rent study, and the right side shows previous work results. Since
we now consider functions with non-disciplined annotations, one

might expect that we catch a higher number of dependencies in
our current study. However, the right side of the bean presents
slightly higher values, meaning that our previous study reports
more dependencies than our current study. This is because the no-
tion of intraprocedural dependency in our previous study also in-
cludes dependencies regarding function parameters. For instance,
Fig. 25 shows a function from Vim which our previous study con-
siders as having an intraprocedural dependency. Notice that vari-
able filename is a function parameter (see line 1) in a manda-
tory feature and is used in an optional feature (see line 4). In our
current study, we do not consider this an intraprocedural depen-
dency, but an interprocedural dependency, considering that there
is a call to this function somewhere else in the code. Thus, consid-
ering that the notion of intraprocedural dependency is stricter in
our current study, we find less intraprocedural dependencies this
time. Considering only the common families, previous study re-
ports intraprocedural dependencies in 9.12% ± 6.63% of functions,
with a median of 7.66% and an IQR of 6.64%. Our current study re-
ports intraprocedural dependencies in 7.51% ± 5.78% of functions.
Median and IQR are, respectively, 6.23% and 6.98%.

Finally, when we consider the number of functions with in-
traprocedural dependencies among the functions with preproces-
sor directives, by dividing these values, the difference between
both studies increases. Fig. 24 c shows a beanplot with the distri-
bution of this relative intraprocedural dependency occurrence on
each family. The asymmetry is now more noticeable, with the right
side of the bean featuring higher values. Since previous study con-
siders more dependencies and less directives, consequently this ra-
tio would be higher. Among the common families in both studies,
previous work report 69.83% ± 16.33% of functions with intrapro-
cedural dependencies over functions with preprocessor directives.
Median and IQR for this metric are 71.52% and 17.25%, respectively.
Our current results for these families show that 55.21% ± 11.89% of
functions with directives have intraprocedural dependencies, with
a median of 52.75% and an IQR of 14.11%. Since our results on in-

I. Rodrigues et al. / Information and Software Technology 78 (2016) 27–52 43
0

5
10

15
20

25
30

D
ep

en
de

nc
y

de
pt

h

Fig. 22. Dependency depths summary considering all program families.

traprocedural dependencies in this subset of families are close to
those regarding all the 40 families (see Section 5.1), we conclude
that the results of the previous work would also apply to our en-
tire set, improving its external validity.

Fig. 26 shows a bar chart featuring this last metric for each
family. Notice that the bars regarding previous study results have
consistently higher values than the corresponding ones from cur-
rent study, with few exceptions. For instance, Sendmail has more
intraprocedural dependencies in our current study. This is due to
its high number of non-disciplined annotations [11] , which prevent
our previous study to detect dependencies like the one in Fig. 27 .
In this figure there is a dependency regarding variable sigerr .
This variable is defined in a mandatory feature (see line 2), then
initialized in an optional feature (see line 7) and later used in a
mandatory feature once more (see line 10). As the preprocessor

0.0

0.1

0.2

0.3

1 2 3 4 5 6 7
Depth

D
en

si
ty

Apache

0.0

0.2

0.4

0.6

1 2 3 4 5 6 7
Depth

D
en

si
ty

Atlantis

0.0

0.1

0.2

0 2 4 6 8 10 12 14
Depth

D
en

si
ty

Bash

0.0

0.3

0.6

0.9

1 2 3 4 5 6 7
Depth

D
en

si
ty

bc

0.00

0.03

0.06

0.09

0.12

0 5 10 15 20
Depth

D
en

si
ty

Berkeley DB

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7
Depth

D
en

si
ty

Bison

0.0

0.2

0.4

0.6

1 2 3 4 5 6 7
Depth

D
en

si
ty

Cherokee

0.00

0.05

0.10

0.15

0.20

0 2 4 6 8 10 12
Depth

D
en

si
ty

ClamAV

0.0

0.1

0.2

0.3

0.4

0 2 4 6 8
Depth

D
en

si
ty

CVS

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7
Depth

D
en

si
ty

Dia

0.0

0.1

0.2

1 2 3 4 5 6 7
Depth

D
en

si
ty

Expat

0.0

0.3

0.6

0.9

1 2 3 4 5 6 7
Depth

D
en

si
ty

Flex

0.0

0.1

0.2

0.3

1 2 3 4 5 6 7
Depth

D
en

si
ty

FVWM

0.0

0.1

0.2

0 2 4 6 8 10
Depth

D
en

si
ty

gawk

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7
Depth

D
en

si
ty

GNU Chess

0.0

0.2

0.4

0.6

0 2 4 6 8 10
Depth

D
en

si
ty

gnuplot

0.0

0.2

0.4

0.6

1 2 3 4 5 6 7
Depth

D
en

si
ty

gzip

0.0

0.2

0.4

0.6

0 2 4 6 8 10
Depth

D
en

si
ty

Irssi

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7
Depth

D
en

si
ty

KIN

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7
Depth

D
en

si
ty

libdsmcc

0.0

0.2

0.4

1 2 3 4 5 6 7
Depth

D
en

si
ty

libieee

0.0

0.1

0.2

0 2 4 6 8 10
Depth

D
en

si
ty

libpng

0.00

0.25

0.50

0.75

1 2 3 4 5 6 7
Depth

D
en

si
ty

libsoup

0.00

0.05

0.10

0.15

0.20

0 2 4 6 8 10 12 14
Depth

D
en

si
ty

libssh

0.00

0.05

0.10

0 5 10 15 20
Depth

D
en

si
ty

libxml2

0.0

0.1

0.2

0 2 4 6 8
Depth

D
en

si
ty

lighttpd

0.00

0.05

0.10

0.15

0.20

0 5 10 15 20 25 30
Depth

D
en

si
ty

Lua

0.0

0.1

0.2

0 2 4 6 8 10 12
Depth

D
en

si
ty

Lynx

0.00

0.25

0.50

0.75

1 2 3 4 5 6 7
Depth

D
en

si
ty

m4

0.0

0.3

0.6

0.9

1 2 3 4 5 6 7
Depth

D
en

si
ty

MPSolve

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7
Depth

D
en

si
ty

mptris

0.0

0.2

0.4

0.6

1 2 3 4 5 6 7
Depth

D
en

si
ty

PRC−Tools

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7
Depth

D
en

si
ty

Privoxy

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7
Depth

D
en

si
ty

RCS

0.00

0.05

0.10

0.15

0.20

0 2 4 6 8 10
Depth

D
en

si
ty

Sendmail

0.00

0.05

0.10

0.15

0 5 10 15 20
Depth

D
en

si
ty

SQLite

0.0

0.2

0.4

0.6

1 2 3 4 5 6 7
Depth

D
en

si
ty

Sylpheed

0.0

0.1

0.2

0.3

0 5 10 15
Depth

D
en

si
ty

Vim

0.0

0.1

0.2

0.3

0.4

0 2 4 6 8
Depth

D
en

si
ty

Xfig

0.00

0.05

0.10

0.15

0 5 10 15 20
Depth

D
en

si
ty

xterm

Fig. 23. Dependency depth distribution in the program families.

44 I. Rodrigues et al. / Information and Software Technology 78 (2016) 27–52

Fig. 24. Comparison on metrics regarding intraprocedural dependencies.
1. workshop_show_file(*filename) {void char
2. WSDEBUG_TRACE#ifdef
3. …
4. wstrace(…, filename);
5. #endif
6. …
7. }

Fig. 25. Code snippet from Vim showing a dependency classified as intraprocedural
by previous study [8] . In this work we do not consider such dependency intrapro-
cedural, due to the dependent variable being a function parameter.
directives #if and #else annotates only part of an if block (see
lines 4-8), this function could not be properly parsed by srcML .

In summary, putting aside the limitations of srcML in our previ-
ous study and the stricter definition of intraprocedural dependen-
cies from our current study (which excludes function parameters),
we may realize that intraprocedural dependencies are still frequent
in the subset of families common to both studies. Although our
current study reports a lower number of intraprocedural depen-

1. * mi_signal_thread(…) {static void
2. sigerr;int
3. …
4. defined(SOLARIS) || defined(__svr5__)#if
5. ((sig = sigwait(&set)) < 0)if
6. #else
7. ((sigerr = sigwait(&set, &sig)) != 0)if
8. #endif
9. {
10. (sigerr <= 0)if
11. …
12. }
13. …
14. }

Fig. 27. Code snippet from Sendmail featuring a false negative of previous study [8] .

dencies in such families, both studies agree on the fact they are
present in the majority of the functions with preprocessor direc-
tives. Moreover, our tool built based on TypeChef proved to be more

ap
ac

he

be
rk

el
ey

 d
b

ch
er

ok
ee

cl
am

av di
a

gn
up

lo
t

irs
si

lib
xm

l2

lig
ht

tp
d

ly
nx

pr
iv

ox
y

se
nd

m
ai

l

sq
lit

e

sy
lp

he
ed vi
m

xf
ig

xt
er

m

D
ep

en
de

nc
y

oc
cu

rr
en

ce
 (%

)

0

20

40

60

80

100
Current study
Previous study

Fig. 26. Comparison of results from this study with results from previous study [8] . Here we consider the percentage of functions with intraprocedural dependencies among
the total of functions with preprocessor directives.

I. Rodrigues et al. / Information and Software Technology 78 (2016) 27–52 45
reliable than previous one built over srcML , in the sense it correctly
reports dependencies that are false negatives of previous work.
5.7. Threats to validity

Now, we present the threats to validity. To structure this sec-
tion, we follow the Wohlin et. al. validity system [31] .

Construct validity. We do not have access to the specification
of valid configurations (the feature model) of the families we ana-
lyze. This raises two issues: first, we cannot know whether a macro
in a macro expression refers to an actual feature. So, we might
consider a dependency between different fragments of the same
feature as a feature dependency because such fragments use dif-
ferent macros. Second, we cannot ensure that all the dependencies
we find in our study arise in valid configurations.

Since we consider that macros in a macro expression refer to
actual features, the existence of a negation within the macro ex-
pression might also pose a threat. For instance, a macro expression
#if !defined(A) does not map into an !A feature. In other
words, the negation of a feature is not a different f eature. However,
such dependencies between macro expressions still could cause
problems, as any other feature dependency. For this reason, we still
consider them in this work.

Internal validity. Our analysis of global dependencies is not ex-
haustive. We do not consider all possible maintenance points on
global variables that may occur inside functions. This is because we
cannot determine if a global variable reference (an impact point)
in a function takes place before or after a particular assignment (a
maintenance point) inside another function. As we do not track the
dataflow of global variables across functions, we limit to consider
only the variable definition as a possible maintenance point. Thus,
we have a lower bound. The real number of global dependencies
might be higher.

Also, our results for dependency depths for Lua are not com-
plete. While the depth computation for every other family occurs
without hassle, our tool cannot finish it for Lua . We attribute this
problem to the high number of chained functions in Lua , as virtu-
ally all of its functions share a parameter regarding the state of Lua
interpreter. Our tool completes this task in a few minutes for most
of the families. With Lua , on the other hand, our tool spends a
week running without finishing its computations. To alleviate this
threat, we limit the call graph size when computing depths for Lua ,
in order to get a lower bound, at least. Even though limited, depen-
dency depths for Lua are the greatest among families we analyze.

Another point is that our tool does not know anything about
the compiler linking process. Therefore, we cannot determine if a
particular function accesses a given resource (such as a global vari-
able or another function) in another file. Thus, we consider that
every function can access any global variable and function simply
by referencing it. This can be problematic if some program defines
global variables or functions with duplicate names across its files,
since our tool is unable to link these resources properly.

Our analysis depends on the TypeChef C parser, which generates
an Abstract Syntax Tree (AST) for each source code file we provide.
The resulting AST is not always completely equivalent to the orig-
inal code, that is, TypeChef may refactor a code before generating
the AST. This is necessary since TypeChef cannot directly map some
non-disciplined annotations to individual AST elements. We also
find that TypeChef do not handle well #ifdef blocks that contain
one or more #elif clauses and no #else , producing nodes with
incorrect presence conditions. This is a minor problem, since we
find that in all the families we analyze, such situation only occur
in 0.43% of annotations. Therefore, we may face false positives and
false negatives in our results, since we analyze the ASTs, not the
original files.

Also, we rely on a previous technique [7] to restrict the analysis
to program families code only, excluding external libraries, by re-
moving their #include directives. In this approach, we still keep
the header files of the program families, but exclude the exter-
nal ones. Considering that external libraries might be platform-
specific, resolving such dependencies would be a manual and time-
consuming task, hindering our analysis. To prevent most of the
syntax errors that the suppression of these libraries would cause,
we generate stubs using C/C++ Development Tooling (CDT) to re-
place all needed macros and types, placing these stubs in a sepa-
rate header file. This process is semi-automatic, because CDT might
not identify all types and macros, so we add them manually when-
ever possible. Therefore, sometimes we are not able to resolve all
missing resources and TypeChef cannot successfully generate the
AST for some files. We present the rates of successful generation
of ASTs for all families in Table A.5 . Our data show that TypeChef
successfully parses 97.70% of all source code files we select in the
study, which is an acceptable ratio. After a manual inspection of
the files that TypeChef rejects, we conclude that they cannot sub-
stantially change the results, thus alleviating this threat.

External validity. In our study we analyze 40 C program fam-
ilies from different sizes and domains. These families are well-
known in the industry. Their communities are very active, despite
some of them exist for many years. Nevertheless, our results might
not hold to other families, as some of them have very distinc-
tive results. The high standard deviation and interquartile range
found in some results, for instance, the number of functions with
global dependency, evidence their high variation. For that reason,
we should not use these results in direct comparison among dif-
ferent families.
6. Consequences

In this section, we present some of the consequences of our re-
sults. First, we present evidence that global dependencies are far
less common than intraprocedural and interprocedural feature de-
pendencies. Thus, any effort in developing tools and techniques to
properly capture feature dependencies might focus firstly on in-
traprocedural and interprocedural types.

Second, our results might also benefit users of existing tools,
such as Emergo [2] , a dataflow analysis tool that infers interfaces
on demand (see Section 7.1). This tool performs feature-sensitive
analyzes that rely on a call depth parameter to detect interpro-
cedural dependencies. Its performance depends on user input of
such parameter. Low values might prevent the detection of some
dependencies, while high values might make analyzes slow. Since
we provide the dependency depth distribution, users can better set
up such a tool, improving its performance.

Previous work [13,28,32] presented some variability bugs and
issues found in program families. A significant amount of these
bugs involves the presence of feature dependencies like the ones
we present in our study. So, the third consequence we present is
that we expect our results could guide the development of tools
to go beyond feature dependency detection, but also catch exist-
ing bugs and issues that might arise in certain configurations due
to feature dependencies. For instance, the tool could use pattern-
matching to find potential variability issues due to feature depen-
dencies in a software repository. Such patterns might include, for
instance, variables declared in an optional feature but used in a
mandatory feature. Assuming that such optional feature is not in-
cluded in the compilation, we would face an undeclared variable
error.

Fourth, in addition to searching for existing bugs regarding fea-
ture dependencies, we also believe our results might favor the de-
velopment of tools to avoid the introduction of such bugs. This
way, the same patterns that could be used to find current bugs

46 I. Rodrigues et al. / Information and Software Technology 78 (2016) 27–52
could also be useful to warn about a variability bug as soon as the
developers adds it. In this sense, the tool could run as an IDE plug-
in, for instance, in an interactive manner checking the code as the
developer types it.
7. Related work

In this section, we present the related work regarding feature
dependencies (Section 7.1), variability bugs (Section 7.2), and C pre-
processor usage (Section 7.3).
7.1. Feature dependencies

Prior studies investigated the occurrence of feature dependen-
cies in preprocessor-based families. Ribeiro et al. presented an em-
pirical study on the impact of feature dependencies during main-
tenance of software families [8] . This study comprised 43 fami-
lies written in C and Java. They developed a tool based on sr-
cML [26] to generate abstract syntax trees from source code and
collect data regarding intraprocedural dependencies in such fami-
lies. They found that 65.92% ± 18.54% of methods contain intrapro-
cedural dependencies. In our study, we focus on families imple-
mented in C, in a total of 40 software families. Instead of srcML,
our tool uses TypeChef [33] , which is a more robust solution as
it can handle code containing undisciplined annotations, which sr-
cML cannot [11] . We extend their study by collecting data regard-
ing three types of dependencies: besides intraprocedural, we con-
sider global and interprocedural. In addition, we also classify the
dependencies according to their direction, and identify the maxi-
mum depth of the interprocedural dependencies.

In another study, Ribeiro et al. [2] presented Emergo , a tool ca-
pable of inferring interfaces from dataflow analysis on demand.
Emergo uses emergent interfaces [34] to raise awareness of intrapro-
cedural and interprocedural feature dependencies during the main-
tenance of configurable systems. Later, Ribeiro et al. [3] conducted
an experiment that showed that the awareness of feature depen-
dencies decreases the effort and reduces errors on maintenance
tasks. In our work, we present the depth distribution for interpro-
cedural dependencies found on some software families. This infor-
mation can possibly benefit Emergo and similar tools, as the call
depth is a required parameter in the computing of emergent inter-
faces. A low depth value may prevent the detection of some feature
dependencies, while a high depth value may cause performance is-
sues. Thus, we complement their work by providing the depth dis-
tribution, which might be helpful to better set tools like Emergo .

Queiroz et al. [35] analyzed the correlation between software
complexity and feature dependencies in 45 preprocessor-based
software families and product lines. Moreover, their study also
pointed which preprocessor directives (such as #ifdef or #elif)
are responsible for the largest number of dependencies. While they
classify dependencies by preprocessor directive, we perform a clas-
sification by direction. Besides, their work comprised only intrapro-
cedural dependencies, whilst our work also includes global and in-
terprocedural dependencies.

Cafeo et al. [36] conducted a comparative study of three pro-
gramming techniques to implement feature dependencies and their
impact on SPL development. Authors analyzed 15 releases of
three SPLs in Java, comparing conditional compilation, Aspect Ori-
ented Programming (AOP) [37] , and Feature Oriented Programming
(FOP) [38] , assessing their contribution to instabilities caused by
feature dependencies in such SPLs. In our work, we analyzed fam-
ilies written in C. All of them use conditional compilation to im-
plement variability, by using #ifdef and other preprocessor di-
rectives. Although we do not assess the stability of such families,
we quantify the occurrence of feature dependencies and bring evi-
dence that these dependencies might induce to problems.

Apel et al. [14] conducted an exploratory study on the nature
of feature interactions in feature-oriented systems. In their work,
they proposed a classification of feature interactions according to
their order and visibility. Then, they presented preliminary data re-
garding feature interaction occurrence in four real-world systems:
Linux, BusyBox, GCC , and Apache . Our definition of feature depen-
dency in our work corresponds to an internal, operational feature
interaction, since we refer to the sharing of program elements and
data among features.
7.2. Variability bugs

Some studies indicated that the indistinct use of C preproces-
sor may degrade the understandability of the code, hampering
its maintenance, and ultimately leading to the introduction of er-
rors [4,5,15] . Recently, researchers investigated the occurrence of
errors that variability might induce. Medeiros et al. [7] conducted
an exhaustive search for syntax errors regarding preprocessor us-
age on 41 product family releases and over 51 thousand commits
of 8 program families. They built a tool based on TypeChef to parse
the code and check for syntax errors in all possible configurations.
Their results showed that such errors are not common in prac-
tice. Later, Medeiros et al. [28] presented an empirical study on
other types of configuration-related issues. They analyzed 15 pop-
ular open-source families using TypeChef and found 39 issues re-
garding undeclared and unused variables and functions. Of this to-
tal, approximately 82% relates to the presence of feature depen-
dencies. In our work, we also use TypeChef to perform variability-
aware parsing. Likewise, we present some variability bugs regard-
ing feature dependencies as motivating examples, but we do not
focus on the identification of such errors. Instead, we focus on
identifying and quantifying feature dependencies in software fam-
ilies.

Abal et al. [13] performed a qualitative study of 42 variability
bugs found on the Linux kernel. As well as syntax errors, their
study also includes semantic errors. They collected such bugs from
bug-fixing commits to the Linux kernel repository. These bugs in-
clude 30 feature-interaction bugs , bugs that arise as a result of fea-
ture interactions. Once more, while we bring some motivation ex-
amples with bugs regarding feature dependencies, the catalog of
such bugs is not an objective of our work. It is important to em-
phasize that these studies present a relatively small number of
variability bugs. However, they consider only bugs that remain af-
ter commits. Both studies are missing bugs detected during builds
or tests, because they got fixed before committing the code. This
way, we have no estimate on how many variability bugs show up
during development and get readily fixed.

Melo et al. [32] conducted a quantitative analysis of variabil-
ity warnings in Linux. By analyzing more than 20,0 0 0 valid con-
figurations on both a stable version and an in-development ver-
sion of Linux, they classified a total of 40 0,0 0 0 compilation warn-
ings. Most common warnings in stable and in-development ver-
sions of Linux were due to unused function and unused variable,
respectively. Although a feature dependency might trigger an un-
used variable warning, if we define a feature that declares a vari-
able, but do not define the feature that uses such a variable, they
do not investigate the cause of those warnings. Likewise, in our
study we detect and classify feature dependencies, but we do not
infer what sort of problems they might cause.
7.3. C preprocessor usage

Several studies analyzed the usage of variability mechanisms
of C preprocessor, cpp . Medeiros et al. [20] conducted an inter-
view study regarding how practitioners perceive the C preproces-
sor. They interviewed 40 developers, cross-validating their results

I. Rodrigues et al. / Information and Software Technology 78 (2016) 27–52 47
with data from a survey with 202 developers, repository mining,
and previous studies. Their results show that the C preprocessor
is still widely used to solve portability and variability problems.
Besides, developers consider variability bugs due to preprocessor
misuse easier to introduce, harder to fix, and more critical than
other bugs. In our work we present actual variability bugs regard-
ing the presence of feature dependencies.

Ernst et al. [9] presented an empirical study concerning C pre-
processor usage. They analyzed 26 C software families, collecting
data regarding the occurrence of preprocessor directives and macro
usage. They also measured to what extent macro dependences oc-
cur in the analyzed families, that is, the dependence of a line of
code on a macro. In our work, we analyze a broader set of C soft-
ware families, although some families are common to both studies.
We also present data regarding preprocessor directives occurrence,
but we focus on the number of functions which contain such direc-
tives. Besides, the feature dependencies we analyze do not relate to
their concept of macro dependence. While they basically count the
number of lines of code depending on a macro, we go beyond by
taking into account the sharing of a variable across different fea-
tures.

Liebig et al. [6] analyzed 40 product families implemented
in C to gather information regarding feature code scattering
and tangling in the use of preprocessor directives. Later, Liebig
et al. [11] analyzed the discipline of preprocessor annotations in
those families. In both studies they developed a tool using srcML
to perform their analysis. Likewise, in our study we also analyze
40 product families, although not exactly the same families. How-
ever, we focus on the analysis of the feature dependencies in such
families.

Hunsen et al. [39] performed a study to understand how the C
preprocessor is used in open-source and industrial systems. Their
study answers questions regarding general use and size of cpp -
annotated code, and the scattering, tangling, and nesting of pre-
processor directives. They analyzed 33 software families, including
open-source and proprietary software, relying on srcML to generate
ASTs from source code. In our work we do not focus on understand
how developers use cpp . Instead, we aim to understand feature de-
pendency occurrence.

Similary, Queiroz et al. [40] conducted an analysis of 20 well-
known C preprocessor-based systems from different domains, gath-
ering statistics regarding scattering, tangling, and nesting depth of
preprocessor annotations. We do not consider such statistics in our
work, since we focus on feature dependencies.
8. Concluding remarks

This work presents an empirical study to better understand the
occurrence of fine-grained feature dependencies in C program fam-
ilies.

Firstly, we present three scenarios to illustrate that different
types of feature dependency might cause problems.

Then, we perform an empirical study of 40 C software fami-
lies to answer our research questions. Our results show that fea-
ture dependencies are fairly common in the families we analyze,
except for global dependencies. We detect intraprocedural depen-
dencies in 51.44% ± 17.77% of the functions containing preproces-
sor directives. We discovered global dependencies in only 12.14% ±
10.46% of the functions which use global variables. Despite being
more problematic, this type of dependency is less common. Re-
garding interprocedural dependencies, we find them in 25.98% ±
19.99% of the functions. This data is concerning, since interproce-
dural dependencies are at least as problematic as global depen-
dencies, as both can spread through different files, being easier
to miss them. Our results show that the most common depen-
dency direction is mandatory-to-optional, occurring in 54.47% ±
31.08% of all dependencies. This means that developers are more
likely to face a dependency when maintaining mandatory code.
We also find that the dependency depth distribution for interpro-
cedural dependencies varies considerably, depending on the family
we analyze. In our results, the median interprocedural dependency
depth is 9, meaning that functions could share data of a variable
9 times, over different functions, until its value reaches a depen-
dency. When a bug involves such a deep interprocedural depen-
dency, it might become harder to track and fix. Finally, we con-
firm previous work [8] results on intraprocedural feature depen-
dencies, since they are present in most of the functions contain-
ing preprocessor directives, although in this work we present more
precise results. Furthermore, we conclude that TypeChef is a more
appropriate tool to deal with software families containing non-
disciplined annotations, compared to srcML . This empirical study
presents results that complement previous work on feature depen-
dencies, and may be helpful for developers to understand how dif-
ferent types of dependencies occur in practice. Furthermore, our
study can possibly guide the implementation of tools and tech-
niques to assist the developer to prevent problems maintaining
software families in the presence of feature dependencies.
Acknowledgments

This work has been supported by CNPq 460883/2014-
3, 573964/2008-4 (INES), 477943/2013-6, 30 6 610/2013-2, and
APQ-1037-1.03/08, CAPES 175956, project DEVASSES (European
Union Seventh Framework Programme, agreement PIRSES-GA-
2013-612569).
Appendix

Table A.1
Intraprocedural dependencies in the program families. Notice that for most families (25 out of 40), at least
half of functions with preprocessor directives also contain intraprocedural dependencies.

Family Version Application domain FDi FIntra FIntra/FDi NoF
apache 2 .4.3 Web server 7 .57% 3 .58% 47 .30% 3910
atlantis 0 .0.2.1 Operating system 4 .27% 1 .71% 40 .00% 117
bash 2 .01 Command language interpreter 13 .42% 5 .89% 43 .89% 1647
bc 1 .03 Calculator 2 .41% 0 .60% 25 .00% 166
berkeley db 4 .7.25 Database system 11 .01% 7 .87% 71 .47% 3468
bison 2 .0 Parser generator 2 .19% 1 .17% 53 .33% 684
cherokee 1 .2.101 Web server 8 .11% 3 .97% 48 .99% 1838
clamav 0 .97.6 Antivirus 13 .37% 7 .05% 52 .71% 2072
cvs 1 .11.21 Revision control system 7 .66% 4 .46% 58 .14% 1122
dia 0 .96.1 Diagramming software 2 .33% 1 .72% 73 .68% 814

(continued on next page)

48 I. Rodrigues et al. / Information and Software Technology 78 (2016) 27–52
Table A.1 (continued)

Family Version Application domain FDi FIntra FIntra/FDi NoF
expat 2 .1.0 XML library 5 .71% 1 .66% 29 .03% 543
flex 2 .5.35 Lexical analyzer 6 .14% 1 .44% 23 .53% 277
fvwm 2 .4.15 Window manager 6 .45% 3 .27% 50 .72% 2141
gawk 3 .1.4 GAWK interpreter 12 .21% 6 .58% 53 .85% 745
gnuchess 5 .06 Chess engine 1 .84% 0 .92% 50 .00% 217
gnuplot 4 .6.1 Plotting tool 12 .84% 6 .23% 48 .54% 1861
gzip 1 .2.4 File compressor 21 .93% 13 .16% 60 .00% 114
irssi 0 .8.15 IRC client 2 .17% 0 .53% 24 .19% 2853
kin 0 .5 Database system 6 .01% 3 .85% 64 .00% 1248
libdsmcc 0 .6 DVB library 2 .00% 1 .00% 50 .00% 100
libieee 0 .2.11 IEEE standards for VHDL library 12 .18% 2 .54% 20 .83% 197
libpng 1 .0.60 PNG library 27 .31% 13 .87% 50 .77% 476
libsoup 2 .41.1 HTTP library 1 .36% 0 .61% 45 .00% 1475
libssh 0 .5.3 SSH library 10 .82% 5 .51% 50 .98% 943
libxml2 2 .9.0 XML library 23 .91% 17 .04% 71 .26% 6009
lighttpd 1 .4.30 Web server 16 .73% 10 .56% 63 .10% 1004
lua 5 .2.1 Programming language 0 .12% 0 .12% 100 .00% 837
lynx 2 .8.7 Web browser 29 .07% 15 .47% 53 .21% 1448
m4 1 .4.4 Macro expander 9 .72% 4 .63% 47 .62% 216
mpsolve 2 .2 Mathematical software 1 .95% 0 .00% 0 .00% 411
mptris 1 .9 Game 17 .17% 14 .14% 82 .35% 99
prc-tools 2 .3 C/C++ library for palm OS 3 .52% 2 .71% 76 .92% 369
privoxy 3 .0.19 Proxy server 21 .55% 14 .02% 65 .05% 478
rcs 5 .7 Revision control system 2 .34% 1 .00% 42 .86% 299
sendmail 8 .14.6 Mail transfer agent 7 .67% 3 .72% 48 .48% 861
sqlite 3 .7.15.3 Database system 16 .85% 8 .81% 52 .27% 2612
sylpheed 3 .3.0 E-mail client 3 .50% 1 .85% 52 .75% 2597
vim 7 .3 Text editor 37 .25% 18 .77% 50 .38% 5600
xfig 3 .2.3 Vector graphics editor 2 .96% 1 .60% 54 .00% 1689
xterm 2 .9.1 Terminal emulator 8 .09% 4 .95% 61 .25% 989

FDi : % of functions with preprocessor directives; FIntra : % of functions with intraprocedural dependen-
cies; NoF : Number of functions.

Table A.2
Global dependencies in the program families. Despite not so common in general, this type of dependency hap-
pens quite often in few families, such as Vim and libxml2 .

Family Version Application domain FGRef FGlobal FGlobal/FGRef NoF
apache 2 .4.3 Web server 30 .74% 1 .30% 4 .24% 3910
atlantis 0 .0.2.1 Operating system 17 .95% 0 .00% 0 .00% 117
bash 2 .01 Command language interpreter 51 .00% 7 .65% 15 .00% 1647
bc 1 .03 Calculator 27 .11% 0 .00% 0 .00% 166
berkeley db 4 .7.25 Database system 8 .39% 0 .95% 11 .34% 3468
bison 2 .0 Parser generator 35 .38% 0 .73% 2 .07% 684
cherokee 1 .2.101 Web server 5 .98% 1 .52% 25 .45% 1838
clamav 0 .97.6 Antivirus 15 .93% 1 .64% 10 .30% 2072
cvs 1 .11.21 Revision control system 30 .30% 2 .23% 7 .35% 1122
dia 0 .96.1 Diagramming software 26 .54% 0 .37% 1 .39% 814
expat 2 .1.0 XML library 23 .57% 0 .00% 0 .00% 543
flex 2 .5.35 Lexical analyzer 23 .83% 1 .44% 6 .06% 277
fvwm 2 .4.15 Window manager 44 .14% 2 .29% 5 .19% 2141
gawk 3 .1.4 GAWK interpreter 30 .60% 2 .95% 9 .65% 745
gnuchess 5 .06 Chess engine 35 .94% 0 .92% 2 .56% 217
gnuplot 4 .6.1 Plotting tool 41 .97% 6 .45% 15 .36% 1861
gzip 1 .2.4 File compressor 68 .42% 9 .65% 14 .10% 114
irssi 0 .8.15 IRC client 26 .95% 0 .21% 0 .78% 2853
kin 0 .5 Database system 26 .84% 1 .60% 5 .97% 1248
libdsmcc 0 .6 DVB library 5 .00% 2 .00% 40 .00% 100
libieee 0 .2.11 IEEE standards for VHDL library 26 .90% 1 .52% 5 .66% 197
libpng 1 .0.60 PNG library 11 .34% 2 .73% 24 .07% 476
libsoup 2 .41.1 HTTP library 12 .47% 0 .00% 0 .00% 1475
libssh 0 .5.3 SSH library 8 .38% 1 .17% 13 .92% 943
libxml2 2 .9.0 XML library 37 .11% 15 .14% 40 .81% 6009
lighttpd 1 .4.30 Web server 12 .55% 1 .00% 7 .94% 1004

(continued on next page)

I. Rodrigues et al. / Information and Software Technology 78 (2016) 27–52 49
Table A.2 (continued)

Family Version Application domain FGRef FGlobal FGlobal/FGRef NoF
lua 5 .2.1 Programming language 4 .06% 0 .00% 0 .00% 837
lynx 2 .8.7 Web browser 37 .22% 10 .70% 28 .76% 1448
m4 1 .4.4 Macro expander 38 .43% 6 .48% 16 .87% 216
mpsolve 2 .2 Mathematical software 10 .46% 1 .46% 13 .95% 411
mptris 1 .9 Game 19 .19% 8 .08% 42 .11% 99
prc-tools 2 .3 C/C++ library for palm OS 43 .36% 0 .81% 1 .88% 369
privoxy 3 .0.19 Proxy server 22 .38% 4 .81% 21 .50% 478
rcs 5 .7 Revision control system 40 .80% 1 .00% 2 .46% 299
sendmail 8 .14.6 Mail transfer agent 31 .24% 1 .97% 6 .32% 861
sqlite 3 .7.15.3 Database system 20 .06% 3 .25% 16 .22% 2612
sylpheed 3 .3.0 E-mail client 28 .30% 1 .04% 3 .67% 2597
vim 7 .3 Text editor 38 .57% 15 .89% 41 .20% 5600
xfig 3 .2.3 Vector graphics editor 52 .40% 1 .12% 2 .15% 1689
xterm 2 .9.1 Terminal emulator 17 .80% 1 .72% 9 .66% 989

FGRef : % of functions referencing global variables; FGlobal : % of functions with global dependencies;
NoF : Number of functions.

Table A.3
Interprocedural dependencies in the program families. This type of dependency has the greatest variation
among families.

Family Version Application domain FM FI FInter NoF
apache 2 .4.3 Web server 6 .14% 5 .01% 9 .87% 3910
atlantis 0 .0.2.1 Operating system 2 .56% 0 .85% 2 .56% 117
bash 2 .01 Command language interpreter 37 .58% 19 .98% 47 .78% 1647
bc 1 .03 Calculator 10 .84% 6 .02% 15 .06% 166
berkeley db 4 .7.25 Database system 55 .82% 18 .54% 62 .72% 3468
bison 2 .0 Parser generator 2 .92% 6 .58% 8 .48% 684
cherokee 1 .2.101 Web server 12 .62% 9 .85% 18 .61% 1838
clamav 0 .97.6 Antivirus 17 .18% 11 .00% 23 .65% 2072
cvs 1 .11.21 Revision control system 18 .81% 14 .35% 28 .43% 1122
dia 0 .96.1 Diagramming software 2 .33% 1 .97% 4 .05% 814
expat 2 .1.0 XML library 3 .68% 1 .84% 5 .52% 543
flex 2 .5.35 Lexical analyzer 1 .08% 11 .19% 12 .27% 277
fvwm 2 .4.15 Window manager 9 .29% 6 .45% 14 .20% 2141
gawk 3 .1.4 GAWK interpreter 16 .91% 8 .86% 23 .49% 745
gnuchess 5 .06 Chess engine 20 .28% 4 .61% 23 .96% 217
gnuplot 4 .6.1 Plotting tool 31 .22% 13 .70% 40 .03% 1861
gzip 1 .2.4 File compressor 24 .56% 15 .79% 35 .96% 114
irssi 0 .8.15 IRC client 2 .28% 1 .68% 3 .72% 2853
kin 0 .5 Database system 32 .29% 5 .69% 36 .38% 1248
libdsmcc 0 .6 DVB library 13 .00% 15 .00% 22 .00% 100
libieee 0 .2.11 IEEE standards for VHDL library 8 .63% 7 .61% 12 .69% 197
libpng 1 .0.60 PNG library 40 .97% 42 .65% 59 .66% 476
libsoup 2 .41.1 HTTP library 0 .61% 0 .41% 1 .02% 1475
libssh 0 .5.3 SSH library 35 .63% 23 .97% 50 .69% 943
libxml2 2 .9.0 XML library 44 .02% 15 .74% 52 .89% 6009
lighttpd 1 .4.30 Web server 25 .70% 20 .22% 37 .35% 1004
lua 5 .2.1 Programming language 0 .12% 0 .12% 0 .24% 837
lynx 2 .8.7 Web browser 28 .04% 24 .31% 42 .33% 1448
m4 1 .4.4 Macro expander 11 .11% 9 .72% 18 .98% 216
mpsolve 2 .2 Mathematical software 0 .97% 1 .46% 2 .43% 411
mptris 1 .9 Game 27 .27% 27 .27% 41 .41% 99
prc-tools 2 .3 C/C++ library for palm OS 12 .20% 5 .42% 17 .34% 369
privoxy 3 .0.19 Proxy server 56 .69% 24 .69% 66 .74% 478
rcs 5 .7 Revision control system 6 .35% 6 .69% 12 .04% 299
sendmail 8 .14.6 Mail transfer agent 21 .95% 8 .48% 26 .71% 861
sqlite 3 .7.15.3 Database system 44 .83% 32 .20% 59 .49% 2612
sylpheed 3 .3.0 E-mail client 4 .74% 3 .62% 7 .78% 2597
vim 7 .3 Text editor 52 .38% 39 .88% 67 .34% 5600
xfig 3 .2.3 Vector graphics editor 5 .45% 3 .02% 7 .58% 1689
xterm 2 .9.1 Terminal emulator 9 .50% 9 .10% 15 .77% 989

FM : % of functions with maintenance points regarding interprocedural dependencies; FI : % of functions
with impact points regarding interprocedural dependencies; FInter : % of functions with interprocedural
dependencies (that is, containing either maintenance or impact points); NoF : Number of functions.

Table A.4
Interprocedural dependency depths in the program families. Notice that val-
ues for Lua are only a lower bound.

Family Version Application domain Max. Avg. St. Dev.
apache 2 .4.3 Web server 7 2 .48 1 .42
atlantis 0 .0.2.1 Operating system 3 1 .49 0 .60

(continued on next page)

50 I. Rodrigues et al. / Information and Software Technology 78 (2016) 27–52
Table A.4 (continued)

Family Version Application domain Max. Avg. St. Dev.
bash 2 .01 Command language interpreter 13 4 .14 2 .78
bc 1 .03 Calculator 1 1 .00 0 .00
berkeley db 4 .7.25 Database system 23 7 .29 3 .72
bison 2 .0 Parser generator 5 1 .10 0 .37
cherokee 1 .2.101 Web server 7 1 .56 0 .83
clamav 0 .97.6 Antivirus 12 5 .51 2 .37
cvs 1 .11.21 Revision control system 8 2 .32 1 .38
dia 0 .96.1 Diagramming software 2 1 .26 0 .44
expat 2 .1.0 XML library 6 3 .13 1 .45
flex 2 .5.35 Lexical analyzer 1 1 .00 0 .00
fvwm 2 .4.15 Window manager 7 2 .34 1 .35
gawk 3 .1.4 GAWK interpreter 9 3 .09 1 .68
gnuchess 5 .06 Chess engine 4 1 .28 0 .49
gnuplot 4 .6.1 Plotting tool 9 1 .57 0 .87
gzip 1 .2.4 File compressor 3 1 .41 0 .64
irssi 0 .8.15 IRC client 9 1 .87 1 .59
kin 0 .5 Database system 7 2 .10 1 .34
libdsmcc 0 .6 DVB library 5 1 .38 0 .76
libieee 0 .2.11 IEEE standards for VHDL library 3 1 .73 0 .83
libpng 1 .0.60 PNG library 9 3 .06 1 .44
libsoup 2 .41.1 HTTP library 3 1 .29 0 .64
libssh 0 .5.3 SSH library 13 4 .30 2 .78
libxml2 2 .9.0 XML library 23 11 .03 3 .32
lighttpd 1 .4.30 Web server 8 2 .94 1 .57
lua 5 .2.1 Programming language 29 23 .40 11 .20
lynx 2 .8.7 Web browser 11 4 .44 1 .83
m4 1 .4.4 Macro expander 4 1 .31 0 .64
mpsolve 2 .2 Mathematical software 1 1 .00 0 .00
mptris 1 .9 Game 4 1 .41 0 .68
prc-tools 2 .3 C/C++ library for palm OS 4 1 .60 0 .75
privoxy 3 .0.19 Proxy server 6 2 .05 0 .94
rcs 5 .7 Revision control system 3 1 .40 0 .73
sendmail 8 .14.6 Mail transfer agent 10 4 .83 2 .54
sqlite 3 .7.15.3 Database system 19 7 .34 2 .94
sylpheed 3 .3.0 E-mail client 4 1 .48 0 .59
vim 7 .3 Text editor 14 4 .01 3 .04
xfig 3 .2.3 Vector graphics editor 8 2 .48 1 .45
xterm 2 .9.1 Terminal emulator 22 11 .11 3 .16

Table A.5
Successful AST generation rate in the program families. Most of the families are completely
parsed.

Family Version Application domain Successful AST generation rate
apache 2 .4.3 Web server 98 .81%
atlantis 0 .0.2.1 Operating system 97 .78%
bash 2 .01 Command language interpreter 100 .00%
bc 1 .03 Calculator 100 .00%
berkeley db 4 .7.25 Database system 99 .78%
bison 2 .0 Parser generator 100 .00%
cherokee 1 .2.101 Web server 96 .55%
clamav 0 .97.6 Antivirus 96 .15%
cvs 1 .11.21 Revision control system 84 .85%
dia 0 .96.1 Diagramming software 93 .85%
expat 2 .1.0 XML library 100 .00%
flex 2 .5.35 Lexical analyzer 100 .00%
fvwm 2 .4.15 Window manager 100 .00%
gawk 3 .1.4 GAWK interpreter 100 .00%
gnuchess 5 .06 Chess engine 100 .00%
gnuplot 4 .6.1 Plotting tool 98 .57%
gzip 1 .2.4 File compressor 100 .00%
irssi 0 .8.15 IRC client 100 .00%
kin 0 .5 Database system 100 .00%
libdsmcc 0 .6 DVB library 100 .00%
libieee 0 .2.11 IEEE standards for VHDL library 100 .00%
libpng 1 .0.60 PNG library 100 .00%
libsoup 2 .41.1 HTTP library 86 .41%

(continued on next page)

I. Rodrigues et al. / Information and Software Technology 78 (2016) 27–52 51
Table A.5 (continued)

Family Version Application domain Successful AST generation rate
libssh 0 .5.3 SSH library 98 .86%
libxml2 2 .9.0 XML library 93 .62%
lighttpd 1 .4.30 Web server 98 .89%
lua 5 .2.1 Programming language 100 .00%
lynx 2 .8.7 Web browser 96 .49%
m4 1 .4.4 Macro expander 100 .00%
mpsolve 2 .2 Mathematical software 100 .00%
mptris 1 .9 Game 100 .00%
prc-tools 2 .3 C/C++ library for palm OS 100 .00%
privoxy 3 .0.19 Proxy server 100 .00%
rcs 5 .7 Revision control system 100 .00%
sendmail 8 .14.6 Mail transfer agent 99 .41%
sqlite 3 .7.15.3 Database system 98 .28%
sylpheed 3 .3.0 E-mail client 98 .90%
vim 7 .3 Text editor 93 .33%
xfig 3 .2.3 Vector graphics editor 100 .00%
xterm 2 .9.1 Terminal emulator 100 .00%

References
[1] M. Cataldo , A. Mockus , J. Roberts , J. Herbsleb , Software dependencies, work de-

pendencies, and their impact on failures, IEEE Trans. Softw. Eng. 35 (6) (2009)
864–878 .

[2] M. Ribeiro , T. Tolêdo , J. Winther , C. Brabrand , P. Borba , Emergo: a tool for im-
proving maintainability of preprocessor-based product lines, in: Proceedings of
the 11 th Annual International Conference on Aspect-oriented Software Develop-
ment Companion, in: AOSD Companion, ACM, 2012, pp. 23–26 .

[3] M. Ribeiro , P. Borba , C. Kästner , Feature maintenance with emergent interfaces,
in: Proceedings of the 36 th International Conference on Software Engineering,
in: ICSE, ACM, 2014, pp. 989–10 0 0 .

[4] H. Spencer , G. Collyer , #ifdef considered harmful, or portability experience
with C News, in: USENIX Summer Technical Conference, 1992, pp. 185–197 .

[5] J.M. Favre , The CPP Paradox, 9 th European Workshop on Software Maintenance,
1995 .

[6] J. Liebig , S. Apel , C. Lengauer , C. Kästner , M. Schulze , An analysis of the vari-
ability in forty preprocessor-based software product lines, in: Proceedings of
the 32 nd ACM/IEEE International Conference on Software Engineering - Volume
1, in: ICSE, ACM, 2010, pp. 105–114 .

[7] F. Medeiros , M. Ribeiro , R. Gheyi , Investigating preprocessor-based syntax er-
rors, in: Proceedings of the 12 th International Conference on Generative Pro-
gramming: Concepts & Experiences, in: GPCE, ACM, 2013, pp. 75–84 .

[8] M. Ribeiro , F. Queiroz , P. Borba , T. Tolêdo , C. Brabrand , S. Soares , On the im-
pact of feature dependencies when maintaining preprocessor-based software
product lines, in: Proceedings of the 10 th ACM International Conference on
Generative Programming and Component Engineering, in: GPCE, ACM, 2011,
pp. 23–32 .

[9] M.D. Ernst , G.J. Badros , D. Notkin , An empirical analysis of c preprocessor use,
IEEE Trans. Softw. Eng. 28 (12) (2002) 1146–1170 .

[10] A. Garrido , R. Johnson , Analyzing multiple configurations of a C program,
in: Proceedings of the International Conference on Software Maintenance, in:
ICSM, IEEE, 2005 .

[11] J. Liebig , C. Kästner , S. Apel , Analyzing the discipline of preprocessor annota-
tions in 30 million lines of c code, in: Proceedings of the Tenth International
Conference on Aspect-oriented Software Development, in: AOSD, ACM, 2011,
pp. 191–202 .

[12] C. Kästner , P. Giarrusso , T. Rendel , S. Erdweg , K. Ostermann , T. Berger , Vari-
ability-aware parsing in the presence of lexical macros and conditional com-
pilation, in: Proceedings of the ACM SIGPLAN Object-oriented Programming
Systems Languages and Applications, in: OOPSLA, ACM, 2011 .

[13] I. Abal , C. Brabrand , A. Wasowski , 42 Variability bugs in the linux kernel: A
qualitative analysis, in: Proceedings of the 29 th ACM/IEEE International Confer-
ence on Automated Software Engineering, in: ASE, ACM, 2014, pp. 421–432 .

[14] S. Apel , S. Kolesnikov , N. Siegmund , C. Kästner , B. Garvin , Exploring feature
interactions in the wild: The new feature-interaction challenge, in: Proceedings
of the 5 th International Workshop on Feature-Oriented Software Development,
in: FOSD ’13, ACM, 2013, pp. 1–8 .

[15] M. Krone , G. Snelting , On the inference of configuration structures from source
code, in: Proceedings of the 16 th International Conference on Software Engi-
neering, in: ICSE, IEEE Computer Society Press, 1994, pp. 49–57 .

[16] J. Feigenspan , C. Kästner , S. Apel , J. Liebig , M. Schulze , R. Dachselt , M. Pa-
pendieck , T. Leich , G. Saake , Do background colors improve program compre-
hension in the #ifdef hell? Empir. Softw. Eng. 18 (4) (2013) 699–745 .

[17] W. Wulf , M. Shaw , Global variable considered harmful, SIGPLAN Not. 8 (2)
(1973) 28–34 .

[18] J. Anvik , L. Hiew , G.C. Murphy , Who should fix this bug? in: Proceedings of
the 28 th International Conference on Software Engineering, in: ICSE, ACM, 2006,
pp. 361–370 .

[19] T. Zimmermann , R. Premraj , N. Bettenburg , S. Just , A. Schroter , C. Weiss , What
makes a good bug report? IEEE Trans. Softw. Eng. 36 (5) (2010) 618–643 .

[20] F. Medeiros , C. Kästner , M. Ribeiro , S. Nadi , R. Gheyi , The love/hate relationship
with the c preprocessor: an interview study, in: Proceedings of the European
Conference on Object-Oriented Programming, in: ECOOP, 2015 .

[21] S. Thaker , D. Batory , D. Kitchin , W. Cook , Safe composition of product lines,
in: Proceedings of the 6 th International Conference on Generative Programming
and Component Engineering, 2007, pp. 95–104 .

[22] V.R. Basili , G. Caldiera , H.D. Rombach , The goal question metric approach, En-
cyclopedia of Software Engineering, Wiley, 1994 .

[23] B. Ryder , Constructing the call graph of a program, IEEE Trans. Softw. Eng. SE-5
(3) (1979) 216–226 .

[24] R. Tarjan , Depth-first search and linear graph algorithms, SIAM J. Comput. 1
(2) (1972) 146–160 .

[25] M. Nagappan , T. Zimmermann , C. Bird , Diversity in software engineering re-
search, in: Proceedings of the 2013 9 th Joint Meeting on Foundations of Soft-
ware Engineering, in: ESEC/FSE 2013, ACM, 2013, pp. 466–476 .

[26] J.I. Maletic , M. Collard , H. Kagdi , Leveraging XML technologies in developing
program analysis tools, in: Proceedings of 4 th International Workshop on Adop-
tion-Centric Software Engineering, in: ACSE, 2004, pp. 80–85 .

[27] P. Gazzillo , R. Grimm , Superc: Parsing all of c by taming the preprocessor, in:
Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation, in: PLDI ’12, ACM, 2012, pp. 323–334 .

[28] F. Medeiros , I. Rodrigues , M. Ribeiro , L. Teixeira , R. Gheyi , An empirical study
on configuration-related issues: investigating undeclared and unused iden-
tifiers, in: Proceedings of the 2015 ACM SIGPLAN International Conference
on Generative Programming: Concepts and Experiences, in: GPCE 2015, ACM,
2015, pp. 35–44 .

[29] E. Vandervieren , M. Hubert , An adjusted boxplot for skewed distributions, Pro-
ceedings in Computational Statistics COMPSTAT 2004 (2004) 1933–1940 .

[30] P. Kampstra , Beanplot: a boxplot alternative for visual comparison of distribu-
tions, J. Stat. Softw., Code Snippets 28 (1) (2008) 1–9 .

[31] C. Wohlin , P. Runeson , M. Höst , M.C. Ohlsson , B. Regnell , A. Wesslén , Experi-
mentation in Software Engineering, Springer Science & Business Media, 2012 .

[32] J. Melo , E. Flesborg , C. Brabrand , A. W ̨asowski , A quantitative analysis of vari-
ability warnings in linux, in: Proceedings of the Tenth International Workshop
on Variability Modelling of Software-intensive Systems, in: VaMoS ’16, ACM,
2016, pp. 3–8 .

[33] A. Kenner , C. Kästner , S. Haase , T. Leich , Typechef: Toward type checking #ifdef
variability in c, in: Proceedings of the 2 nd International Workshop on Fea-
ture-Oriented Software Development, in: FOSD, ACM, 2010, pp. 25–32 .

[34] M. Ribeiro , H. Pacheco , L. Teixeira , P. Borba , Emergent feature modularization,
in: Proceedings of the ACM International Conference Companion on Object
Oriented Programming Systems Languages and Applications Companion, in:
OOPSLA, ACM, 2010, pp. 11–18 .

[35] F. Queiroz , M. Ribeiro , S. Soares , P. Borba , Towards a better understanding of
feature dependencies in preprocessor-based systems, in: Proceedings of the
6 th Latin American Workshop on Aspect-Oriented Software Development: Ad-
vanced Modularization Techniques, in: LA-WASP, 2012 .

[36] B. Cafeo , F. Dantas , A. Gurgel , E. Guimaraes , E. Cirilo , A. Garcia , C. Lucena ,
Analysing the impact of feature dependency implementation on product line
stability: an exploratory study, in: 2012 26 th Brazilian Symposium on Software
Engineering (SBES), 2012, pp. 141–150 .

[37] G. Kiczales , J. Lamping , A. Mendhekar , C. Maeda , C. Lopes , J.-M. Loingtier , J. Ir-
win , Aspect-oriented programming, in: M. Ak ̧s it, S. Matsuoka (Eds.), ECOOP’97
— Object-Oriented Programming, Lecture Notes in Computer Science, 1241,
Springer Berlin Heidelberg, 1997, pp. 220–242 .

http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0026
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0026
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0026
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0026
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0030
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0030
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0033
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0033
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0033
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0033
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0033
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0037

52 I. Rodrigues et al. / Information and Software Technology 78 (2016) 27–52
[38] C. Prehofer , Feature-oriented programming: a fresh look at objects, in:

M. Ak ̧s it, S. Matsuoka (Eds.), ECOOP’97 — Object-Oriented Programming,
Lecture Notes in Computer Science, 1241, Springer Berlin Heidelberg, 1997,
pp. 419–443 .

[39] C. Hunsen , B. Zhang , J. Siegmund , C. Kästner , O. Lebenich , M. Becker , S. Apel ,
Preprocessor-based variability in open-source and industrial software systems:
an empirical study, J. Empir. Softw. Eng. (2015) .

[40] R. Queiroz , L. Passos , M. Valente , C. Hunsen , S. Apel , K. Czarnecki , The shape of
feature code: an analysis of twenty c-preprocessor-based systems, Softw. Syst.
Model. (2015) 1–20 .

http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0038
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0038
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30092-1/sbref0040

