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a b s t r a c t 
Context: Maintaining software families is not a trivial task. Developers commonly introduce bugs when 
they do not consider existing dependencies among features. When such implementations share program 
elements, such as variables and functions, inadvertently using these elements may result in bugs. In this 
context, previous work focuses only on the occurrence of intraprocedural dependencies, that is, when 
features share program elements within a function. But at the same time, we still lack studies investi- 
gating dependencies that transcend the boundaries of a function, since these cases might cause bugs as 
well. 
Objective: This work assesses to what extent feature dependencies exist in actual software families, an- 
swering research questions regarding the occurrence of intraprocedural, global, and interprocedural de- 
pendencies and their characteristics. 
Method: We perform an empirical study covering 40 software families of different domains and sizes. We 
use a variability-aware parser to analyze families source code while retaining all variability information. 
Results: Intraprocedural and interprocedural feature dependencies are common in the families we ana- 
lyze: more than half of functions with preprocessor directives have intraprocedural dependencies, while 
over a quarter of all functions have interprocedural dependencies. The median depth of interprocedural 
dependencies is 9. 
Conclusion: Given these dependencies are rather common, there is a need for tools and techniques to raise 
developers awareness in order to minimize or avoid problems when maintaining code in the presence of 
such dependencies. Problems regarding interprocedural dependencies with high depths might be harder 
to detect and fix. 

© 2016 Elsevier B.V. All rights reserved. 
1. Introduction 

Developers commonly introduce errors when they fail to rec- 
ognize dependencies among the software modules they are main- 
taining [1] . The same situation happens in configurable systems in 
terms of program families and product lines, where features share 
program elements such as variables and functions. This way, fea- 
tures might depend on each other and developers can miss such 
dependencies as well. Consequently, by maintaining one feature 
implementation, they might introduce problems to another, like 
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when assigning a new value to a variable which is correct to the 
feature under maintenance, but incorrect to the one that uses this 
variable [2,3] . 

In this context, developers often use the C preprocessor to 
implement variability in software families [4–7] . The C prepro- 
cessor allows the use of directives to annotate the code, asso- 
ciating program elements with specific features. When a devel- 
oper defines a variable in a feature and then uses it in another 
feature, we have a feature dependency. The same happens with 
functions. 

Previous work [8] reports on how often feature dependencies 
occur in practice by considering 43 preprocessor-based families 
and product lines. However, the study focuses only on intrapro- 
cedural dependencies, that is, feature dependencies that occur ex- 
clusively within the function boundaries. Nevertheless, dependen- 
cies that go beyond function boundaries might be harder to detect. 
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Despite important, we still lack a study that takes other kinds of 
feature dependencies into account. 

Therefore, to minimize these lack and better understand fea- 
ture dependencies, in this work we perform an empirical study to 
assess to what extent feature dependencies occur in practice, iden- 
tifying their characteristics and frequency. We also compare some 
of our results with results from previous work [8] . 

Before executing this study, as a first step, we arbitrarily ana- 
lyze several bug reports from many open-source software families, 
like GCC , 1 GNOME , 2 and Linux kernel. 3 The idea of this first step 
is to learn how configuration-related bugs happen in such families 
and better prepare our study. After finding examples of bugs re- 
lated to feature dependencies, we conduct an empirical study that 
complements previous work on this topic, in the sense that we 
take interprocedural dependencies into account. Notice that, dur- 
ing maintenance of preprocessor-based software, these dependen- 
cies are even harder to detect: one feature might use data from 
another and they are in different functions. Because in a typical 
system we have several method calls passing data, we also com- 
pute the depth of such dependencies (from the variable defini- 
tion to its use). In addition, we consider dependencies based on 
global variables. We also compute the dependency direction, that 
is, mandatory-to-optional, optional-to-mandatory, and optional-to- 
optional. A mandatory-to-optional dependency, for instance, means 
that the definition of the program element (for instance, a global 
variable) happens in a mandatory feature—that is, no #ifdef en- 
compassing the definition—and its use in an optional feature. In 
particular, we answer the following research questions: How often 
do program families contain intraprocedural dependencies? How 
often do program families contain global dependencies? How often 
do program families contain interprocedural dependencies? How 
often do dependencies of different directions occur in practice? 
What is the dependency depth distribution for interprocedural de- 
pendencies? How the results of the current study compare with 
the previous ones? Answering these questions is important to bet- 
ter understand feature dependencies and assess their occurrence in 
practice. 

To answer our research questions, our study covers 40 C pro- 
gram families of different domains and sizes. We select these fam- 
ilies inspired by previous work [6–11] . We rely on TypeChef [12] , a 
variability-aware parser, to compute feature dependencies consid- 
ering the entire configuration space of each source file of the fam- 
ilies we analyze. To detect dependencies that span multiple files, 
we perform global analysis (instead of per-file analysis). 

The data we collect in our empirical study reveal that the fea- 
ture dependencies we consider in this work are reasonably com- 
mon in practice, except the ones regarding global variables. Fol- 
lowing the convention “average ± standard deviation”, our results 
show that 51.44% ± 17.77% of functions with preprocessor direc- 
tives have intraprocedural dependencies, 11.90% ± 12.20% of the 
functions which use global variables have global dependencies, 
while 25.98% ± 19.99% of all functions have interprocedural de- 
pendencies. 

In summary, the main contributions of this paper are: 
• data on feature dependency that reveal to what extent they are 

common in practice, complementing previous work by consid- 
ering new types of dependencies; 

• a strategy to compute feature dependencies based on the Type- 
Chef variability parser. 
We organize the remainder of this paper as follows. In 

Section 2 we introduce the concept of feature dependency. Next, in 
1 https://gcc.gnu.org/bugzilla/ . 
2 https://bugzilla.gnome.org/ . 
3 https://bugzilla.kernel.org/ . 

1.  #ifdef A
2.    int x;
3.  #endif
4. …
5.  #ifdef B
6.    x++;
7.  #endif

Fig. 1. Example of a feature dependency regarding variable x . 
Section 3 we show motivating examples that illustrate variability 
bugs from industrial systems. Then, we present the empirical study 
settings in Section 4 . After, in Section 5 we present and discuss the 
results. Later, in Section 6 we present some consequences of our 
work. In Section 7 we discuss the related work and in Section 8 we 
present the final considerations of this work. 

This paper is an extension of our previous work [8] on feature 
dependency analysis. In this work we bring more evidence regard- 
ing bugs related to intraprocedural feature dependencies. Com- 
pared to the previous study, we analyze new families and use a dif- 
ferent tool, improving its external validity. Moreover, we now take 
global and interprocedural dependencies into account, presenting 
bugs related to such types of dependencies and computing data 
regarding their presence in a set of industrial software families. 
2. Feature dependency 

A program family consists of a set of programs that share a 
common core but also have distinguishing functionalities. These 
commonalities and variabilities are often modeled as features, each 
representing increments in functionality to the program. Each fea- 
ture provides a potential configuration option, so developers can 
generate different programs tailored for specific tasks or platforms. 
When we consider program families written in C, developers of- 
ten use the C preprocessor ( cpp ) to implement variability in those 
systems [4–7] . 

The C preprocessor allows the use of conditional compilation 
directives such as #if or #ifdef along with a macro expres- 
sion to surround feature-specific fragments of code. Macro expres- 
sions might contain one or more macros as a boolean formula, 
as in #if defined(A) && defined(B) , which might refer to 
specific configuration options. The minimum subset of features in 
which a fragment of code is included in the conditional compila- 
tion is called presence condition [13] . Developers can use preproces- 
sor directives to wrap from entire structures such as functions to 
part of a statement such as a single variable, allowing variability in 
different levels of granularity. This flexibility also allows code from 
a single feature to be scattered all over the program. 

Often features communicate and collaborate with each other, 
so their implementations might share program elements and data. 
When different features refer to the same program element, such 
as a variable, we have a feature dependency. Following the classifi- 
cation proposed by Apel et al. [14] , such feature dependencies we 
consider in this paper are operational feature interactions, since a 
feature pass data to another one. 

To better explain this concept, we refer to the code snippet in 
Fig. 1 . In the figure, the definition of variable x (see line 2) is inside 
an #ifdef block, associated to the macro expression A (see line 
1). In practice, not all macros in a macro expression correspond to 
actual features in a broader sense. However, since feature models 
are not always available, and for the sake of simplicity, in this work 
we consider that each macro in a macro expression refers to a dif- 
ferent feature. That said, we consider that the definition of x is in 
a code fragment of feature A . Likewise, x is later incremented (see 
line 6) in a code fragment of feature B (see line 5). This means that 
the definition of x will be included in the compilation if and only 
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  1.  GInetAddress *g_inet_address_new_from_string (…) {
  2.   G_OS_WIN32#ifdef
  3.     sockaddr_storage sa;struct
  4.    …
+ 5.    volatile GType type;
  6.    gint len;
  7.  #else /* !G_OS_WIN32 */
  8.    …
  9.  #endif
- 10.   (void) g_inet_address_get_type ();
+ 11.   type = g_inet_address_get_type ();
  12.   …
  13. }

+ Including line Removing line-

Fig. 2. Adding an intraprocedural dependency, causing a bug in GLib . 
if we define A . Similarly, the increment of the same variable will be 
included if and only if we define B . In other words, the presence 
condition of statement int x is A , whereas the presence condi- 
tion of statement x++ is B . Since the use of x in a code fragment 
of B depends on its definition in a code fragment of A , we can say 
that feature B depends on feature A . 

In this paper we focus on three types of feature dependen- 
cies: intraprocedural, global , and interprocedural dependencies. We 
explore them in the next section. 
3. Motivating examples 

Developers often use preprocessors to implement variabil- 
ity in software families, even though they might induce to er- 
rors [4,5,15,16] . 

In this work, we refer to bug as both faults and errors, in which 
a fault is an incorrect instruction in the software code, due to a 
developer mistake, and an error is an incorrect program state, due 
to a fault [13] . 

A variability bug is a fault or error that happens in some, but 
not all, feature configurations of a software family [13] . A category 
of variability bugs is related to feature dependencies. Due to this 
dependency, a maintenance task in one feature might break an- 
other one [8] . This might happen since there is no mutual agree- 
ment [17] between the developers. 

To better illustrate that feature dependencies might cause prob- 
lems, in this section we present three scenarios of C program 
families containing actual variability bugs related to dependencies. 
First, we present an example of variability bug regarding an in- 
traprocedural dependency ( Section 3.1 ). Then, we present a vari- 
ability bug related to a global dependency ( Section 3.2 ). Next, we 
present a variability bug regarding an interprocedural dependency 
( Section 3.3 ). Finally, we summarize our findings on this topic 
( Section 3.4 ). 
3.1. Scenario 1: intraprocedural dependency 

In this work we refer to intraprocedural dependencies when fea- 
tures share the same program element inside a function. For exam- 
ple, we may have a local variable defined in a feature and used in 
another one. 

Thus, we have an intraprocedural dependency every time the 
definition of a local variable has a different presence condition 
than its use. We refer to every variable in this situation as depen- 
dent variable . Intraprocedural dependencies can only occur in func- 
tions containing preprocessor directives, since there should be at 
least one #ifdef (or equivalent) directive surrounding a depen- 
dent variable inside such a function. 

Fig. 2 presents a code snippet from GLib , 4 a general-purpose 
utility library for applications written in C. The figure shows a 
modification made to the code, by including and removing spe- 
cific lines, committed to a Git repository. 5 In the figure, the func- 
tion g_inet_address_new_from_string parses a string con- 
taining an IP address. Inside this function, there is a call to 
g_inet_address_get_type (see line 10). To ensure that the 
compiler would not optimize away this function, the developer 
added a volatile variable, type (see line 5), assigning the function 
return value to such a variable (by removing line 10 and adding 
line 11). 

The problem is that the definition of type is inside an 
#ifdef block, and therefore it is accessible only when we de- 
fine G_OS_WIN32 . Such macro expressions, consisting of one or 
few macros, are fairly common in the program families of our 
study, as we shall see in Table 2 . Notice that the developer intro- 
duced an intraprocedural dependency for the variable type . We 
say that the direction of this dependency is optional-to-mandatory, 
as the presence condition of the variable definition (see line 5) is 
G_OS_WIN32 , whereas the presence condition of the variable use 
(see line 11) is true . In case we do not set G_OS_WIN32 , that is, 
in a non- Windows system, we get an undefined variable error for 
the variable type and cannot compile the code. 

Fig. 3 shows a new modification in the code, in order to fix 
this variability bug. 6 To do so, the developer relocated 7 the type 
variable definition to a mandatory portion of code (by removing 
line 6 and adding line 2). This modification makes the presence 
condition of both variable definition (see line 2) and its use (see 
line 11) the same, ceasing the dependency. 

In this work, we consider two points for a dependency: the 
maintenance point and the impact point . For intraprocedural de- 
pendencies, we define a maintenance point as the point where 
we can change the name, type, or value of a dependent variable. 
Thus, a variable definition or assignment are possible maintenance 
points. The impact points are the points we can affect by chang- 
ing the maintenance point, or, in other words, where the depen- 
dent variable is later referenced. Notice that a maintenance point, 
such as a variable assignment, can also be an impact point, regard- 
ing a previous maintenance point. Moreover, to have a dependency, 
the presence condition of the maintenance point must be different 
than the impact point. In Fig. 2 , we have an example of mainte- 
nance point at line 5 and an impact point at line 11. 

4 https://developer.gnome.org/glib/ . 
5 https://git.gnome.org/browse/glib/ . 
6 https://bugzilla.gnome.org/show _ bug.cgi?id=580750 . 
7 https://goo.gl/YFPD4F . 
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  1.  GInetAddress *g_inet_address_new_from_string (…) {
+ 2.    volatile GType type;
  3.   G_OS_WIN32#ifdef
  4.     sockaddr_storage sa;struct
  5.    …
- 6.    volatile GType type;
  7.    gint len;
  8.  #else /* !G_OS_WIN32 */
  9.    …
  10. #endif
  11.   type = g_inet_address_get_type ();
  12.   …
  13. }

+ Including line Removing line-

Fig. 3. Removing the dependency to fix the bug in GLib . 

Fig. 4. Global dependencies of different directions. 
3.2. Scenario 2: global dependency 

Dependencies often transcend the boundaries of a function. A 
global dependency is similar to an intraprocedural dependency, ex- 
cept that the dependent variable is global, not local. In a global 
dependency the global variable appears outside a function and is 
used within a function. As we can define a global variable in a 
different file from where we use it, we might overlook these de- 
pendencies. 

Notice that, unlike intraprocedural dependencies, we can have 
global dependencies even in functions that do not have preproces- 
sor directives. This can happen since we have a global variable de- 
clared in an optional feature and used within such a function in a 
mandatory feature. Fig. 4 illustrates two functions with global de- 
pendencies. While the function in the left-hand side of the figure 
contains a mandatory-to-optional dependency and a preprocessor 
directive ( #ifdef ), the right-hand side shows a function with an 
optional-to-mandatory dependency, but without any directives. 

Fig. 5 presents a code snippet of the libxml2 8 software fam- 
ily, a XML parser written in C. The figure depicts a modification 
made to the code, committed to a Git repository. 9 In the figure we 
have a global variable, xmlout (see line 3). A preprocessor condi- 
tional directive ( #if defined(HTML) || defined(VALID) ) 
surrounds its definition, which means the variable xmlout is 
available if we define at least one of the macros. Notice that the 
developer added lines 10 and 11 to the code, using the xmlout 
variable inside the function parseAndPrintFile in the manda- 
tory feature (see line 10). As there is no #ifdef encompassing 
the xmlout use, we have a global dependency for this variable. 
The direction of this dependency is again optional-to-mandatory, 
as the presence condition of the variable definition (the mainte- 
nance point) is HTML || VALID while the presence condition of 
its use (the impact point) is true . 

8 http://xmlsoft.org/ . 
9 https://git.gnome.org/browse/libxml2/ . 

This dependency triggers a bug 10 if we do not define any of 
the macros ( HTML or VALID ), as we still reference the variable 
xmlout in the function parseAndPrintFile while it is unde- 
fined. Fig. 6 presents another modification to the code, aiming to 
solve this variability bug. In the figure, the developer included 11 
the same conditional directive of the variable definition to its use 
(by adding lines 10 and 13). 
3.3. Scenario 3: interprocedural dependency 

We refer to interprocedural dependencies when features share 
data among different functions. Consider two functions, f and g . 
Function f calls g passing x as an argument. If g uses data from x 
in a different feature than the feature associated to the g call in f , 
we have an interprocedural dependency. In this case, maintaining 
the argument of the call to g , for instance, by changing its value, 
we might break a feature at the points where function g references 
x . 

For instance, Fig. 7 depicts two situations in which we have 
interprocedural dependencies regarding functions f and g . In the 
left-hand side of the figure we have a mandatory-to-optional de- 
pendency, with a maintenance point at line 3 in a mandatory fea- 
ture (where f passes x to g ), and an impact point at line 8 in an 
optional feature (where g uses x ). In the right-hand side of the 
figure the situation is just the opposite, as we have an optional- 
to-mandatory dependency, given the maintenance point at line 4 
is now in an optional feature, while the impact point at line 9 is 
in a mandatory feature. This way, just as might happen with global 
dependencies, we can also have functions without preprocessor di- 
rectives involved in interprocedural feature dependencies. 

Fig. 8 presents a code snippet from Lustre , 12 a parallel dis- 
tributed file system for high-performance cluster computing. The 
figure depicts a modification made to the code, committed to a Git 
repository. 13 In the figure, the developer added an #ifdef block 
(see lines 4–7) containing a reference to the parameter nd (see line 
5), which is a pointer to a struct of type nameidata . Develop- 
ers reported a null pointer dereference bug 14 regarding the nd pa- 
rameter. When calling the function ll_revalidate_nd , we may 
face a null pointer dereference accessing nd- > flags if nd is null. 

To solve this problem, the program now checks 15 if nd is null, 
right before accessing nd- > flags (see Fig. 9 , line 12). Despite 

10 https://bugzilla.gnome.org/show _ bug.cgi?id=611806 . 
11 https://goo.gl/gACFs6 . 
12 http://www.lustre.org . 
13 http://git.whamcloud.com/ . 
14 https://jira.hpdd.intel.com/browse/LU-3483 . 
15 http://review.whamcloud.com/#/c/6715/5/lustre/llite/dcache.c,cm . 
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Fig. 5. Adding a new save option, creating a global dependency and causing a variability bug in libxml2 . 
  1.   defined(HTML) || defined(VALID)#if
  2.  …
  3.   xmlout = 0;static int
  4.  #endif
  5.  …
  6.   parseAndPrintFile(…) {static void
  7.    …
  8.     (format)if
  9.      saveOpts |= XML_SAVE_FORMAT;
+ 10.  defined(HTML) || defined(VALID)#if
  11.    (xmlout)if
  12.      saveOpts |= XML_SAVE_AS_XML;
+ 13. #endif
  14.   …
  15. }

+ Including line

Fig. 6. Removing the dependency to fix the bug in libxml2 . 

Fig. 7. Interprocedural dependencies of different directions. 
its severity, this bug remained undetected for more than one year. 
This is because the problematic line of code is guarded by a macro 
and is only accessible on Linux kernel versions 2.6.38 and up. On 
older kernels, the code is innocuous. In other words, this variability 

bug occurs only in configurations that exist on newer versions of 
Linux kernel. 

To verify the existence of an interprocedural depen- 
dency in this code, we must check the calls to the function 
ll_revalidate_nd . Although there are no calls to this function 
in the Lustre code, we can find them in the Linux kernel. Fig. 10 
shows such an indirect call in line 26. In this case, the field 
d_op of struct dentry corresponds to the struct ll_d_ops 
( Fig. 11 ). Therefore, dentry- > d_op- > d_revalidate points to 
the function ll_revalidate_nd (see line 2 in Fig. 11 ). Notice 
that, even though this dependency does not directly cause this 
variability bug, it might delay the detection and further correction 
of this bug. For instance, if there was no #ifdef encompassing 
the reference to the parameter nd (see Fig. 8 , line 5), this prob- 
lem would occur in every implementation, probably being more 
noticeable. 

As this call is in a mandatory section of code and we ac- 
cess the parameter nd in an optional feature (see Fig. 8 , 

  1.   ll_revalidate_nd(  dentry *dentry,int struct
  2.                        nameidata *nd) {struct
  3.    …
+ 4.   LOOKUP_RCU#ifdef
+ 5.        (nd->flags & LOOKUP_RCU)if
+ 6.               -ECHILD;return
+ 7.  #endif
  8.    …
  9.  }

+ Including line

Fig. 8. Adding an interprocedural dependency in Lustre . 
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  1.   HAVE_IOP_ATOMIC_OPEN#ifdef
  2.   ll_revalidate_nd(  dentry *dentry,int struct
  3.                        flags) {unsigned int
  4.    …
  5.  }
  6.  #else /* !HAVE_IOP_ATOMIC_OPEN */
  7.   ll_revalidate_nd(  dentry *dentry,int struct
  8.                        nameidata *nd) {struct
  9.    …
  10.  HAVE_DCACHE_LOCK#ifndef
- 11.    (nd->flags & LOOKUP_RCU)if
+ 12.    (nd && (nd->flags & LOOKUP_RCU))if
  13.      -ECHILD;return
  14. #endif
  15.   …
  16. }
  17. #endif /* HAVE_IOP_ATOMIC_OPEN */

+ Including line Removing line-

Fig. 9. Fixing the possible null pointer dereference in Lustre . 
1.   dentry *lookup_one_len(…) {struct
2.    …
3.     qstr this;struct
4.    …
5.     __lookup_hash(&this, base, NULL);return
6.  }
7.
8.   dentry *__lookup_hash(  qstr *name,static struct struct
9.  dentry *base,                                      struct
10.  nameidata *nd) {                                     struct
11.   …
12.    dentry *dentry;struct
13.   …
14.   dentry = do_revalidate(dentry, nd);
15.   …
16. }
17.
18.  dentry *do_revalidate(  dentry *dentry,static struct struct
19.    nameidata *nd) {                                  struct
20.    status = d_revalidate(dentry, nd);int
21.   …
22. }
23.
24.  inline  d_revalidate(  dentry *dentry,static int struct
25.                                 nameidata *nd) {struct
26.    dentry->d_op->d_revalidate(dentry, nd);return
27. }

Fig. 10. Code snippet from Linux kernel . 
1.  dentry_operations ll_d_ops = {  struct
2.    .d_revalidate = ll_revalidate_nd,
3.    .d_release = ll_release,
4.    .d_delete  = ll_ddelete,
5.    .d_iput    = ll_d_iput,
6.    .d_compare = ll_dcompare,
7.  };

Fig. 11. Code snippet from Lustre . 
line 5), we have an mandatory-to-optional interprocedu- 
ral dependency. The presence condition of nd at first was 
LOOKUP_RCU (see Fig. 8 , line 4), but further modifications 
changed the presence condition to (!HAVE_IOP_ATOMIC_OPEN 
&& !HAVE_DCACHE_LOCK) (see Fig. 9 , lines 6 and 10). 

Analogously to the intraprocedural and global dependencies, in 
which the dependent variable initialization is a possible mainte- 
nance point, we consider the function call as a maintenance point 
regarding an interprocedural dependency, as its arguments initial- 
ize the function formal parameters. Thus, a maintenance task in a 

function call, such as an argument change, might impact the cor- 
responding parameter use inside the callee function (the impact 
point). In this example, we have a maintenance point at Fig. 10 , 
line 26, and an impact point in Fig. 8 , line 5. When such points 
are in different files, or, in this case, in different projects, detecting 
these dependencies can be more difficult. 

Moreover, a function call argument may come from an- 
other function. In Fig. 10 , the null problematic value comes 
from function lookup_one_len , as an argument when call- 
ing the function __lookup_hash (see line 5). This argument 
initializes the parameter nd (line 10), which also passes it 
through the function do_revalidate (see line 14) before fi- 
nally reaching the function d_revalidate (see line 20). Func- 
tion d_revalidate includes it as an argument of the call to 
dentry- > d_op- > d_revalidate (see line 26). We refer to the 
total of chained function calls that share the same data regard- 
ing an interprocedural dependency as the dependency depth . In this 
example, the maximum depth is four, as the null value ( Fig. 10 , 
line 5) passes through four function calls before the function 
ll_revalidate_nd references it in a different configuration. 
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Interprocedural dependencies with high depths might require 
more attention from the developer. As there are more functions to 
consider when maintaining a feature, such dependencies are easier 
to miss, facilitating the introduction of bugs. 
3.4. Summary 

Bugs in general contribute to decrease developers productiv- 
ity and impair software quality. Tasks like submitting bug re- 
ports, triaging bugs, developing patches, committing changes to 
the repository, validating patches, and updating documentation de- 
mand time and effort [18,19] . Even if a simple bug could be easily 
fixed, when developers have to deal with a great number of them, 
the combined effort to perform all those tasks would raise signifi- 
cantly. 

Variability bugs—including the ones regarding feature 
dependencies—are even more difficult to deal with, since they 
occur only in specific configurations, possibly delaying their detec- 
tion and subsequent fix. Developers themselves consider variability 
bugs easier to introduce, harder to fix, and more critical than other 
bugs [20] . Moreover, global and interprocedural dependencies are 
particularly problematic, as different f eatures might share data 
from a variable between different files. The bug in Section 3.3 is 
rather complicated because it involves two different projects 
( Lustre and Linux ). The maintenance of a variable in a mandatory 
section of Lustre causes a bug when Linux references it in an 
optional feature. Fixing a bug like this involves coordinating teams 
of developers of both projects. 

This section introduces variability bugs related to three types of 
feature dependencies. Although these motivating examples demon- 
strate how feature dependencies might lead to variability bugs, we 
cannot state that a dependency generates bugs by itself. Instead, 
dependencies might become a problem when developers are not 
aware of them. This way, it is necessary to learn more about such 
dependencies in order to avoid or minimize potential problems 
when maintaining software families. Note that these are code de- 
pendencies. Although we expect them to often correspond to de- 
pendencies specified in feature models, there is no guarantees that 
the code dependencies actually match the feature model depen- 
dencies. When they do not, we have the so called unsafe compo- 
sition [21] . To assess how often these dependencies occur in prac- 
tice, and what are their characteristics, we present next an empir- 
ical study to answer research questions on this topic ( Section 4 ). 
4. Study settings 

In this section we present the settings of our study to investi- 
gate feature dependencies on program families. Our study covers 
40 C industrial program families, varying from different domains 
and sizes. We select these families inspired by previous work 
[6–11] . To structure our research, we use the Goal, Question, and 
Metrics [22] approach. 
4.1. Goal, question, and metrics 

With this empirical study we aim to investigate to what extent 
feature dependencies occur in C program families, and learn more 
about the characteristics of such dependencies. We also want to 
replicate part of a previous work [8] , now using a more appropriate 
tool to analyze C program families in a variability-aware manner. 

We define the goals, questions, and metrics of this study as fol- 
lows: 

Goal 1 To assess the occurrence of different types of feature 
dependencies in C program families 

Question 1.1 How often do program families contain in- 
traprocedural dependencies? 
Metric 1.1.1 Number of functions with preprocessor direc- 

tives (FDi) 
Metric 1.1.2 Number of functions with intraprocedural de- 

pendencies (FIntra) 
Metric 1.1.3 Number of functions with intraprocedural de- 

pendencies among the functions with preprocessor di- 
rectives (FIntra / FDi) 

Question 1.2 How often do program families contain global 
dependencies? 
Metric 1.2.1 Number of functions which use global vari- 

ables (FGRef) 
Metric 1.2.2 Number of functions with global dependen- 

cies (FGlobal) 
Metric 1.2.3 Number of functions with global dependen- 

ciesamong the functions which use global variables 
(FGlobal / FGRef) 

Question 1.3 How often do program families contain inter- 
procedural dependencies? 
Metric 1.3.1 Number of functions with maintenance 

points regarding interprocedural dependencies (FM) 
Metric 1.3.2 Number of functions with impact points re- 

garding interprocedural dependencies (FI) 
Metric 1.3.3 Number of functions with either mainte- 

nance or impact points regarding interprocedural de- 
pendencies (FInter) 

Goal 2 To investigate further characteristics of feature depen- 
dencies 
Question 2.1 How often do dependencies of different direc- 

tions (mandatory-to-optional, optional-to-mandatory, and 
optional-to-optional) occur? 
Metric 2.1.1 Number of mandatory-to-optional dependen- 

cies (M → O) 
Metric 2.1.2 Number of optional-to-mandatory dependen- 

cies (O → M) 
Metric 2.1.3 Number of optional-to-optional dependencies 

(O → O) 
Question 2.2 What is the dependency depth distribution for 

interprocedural dependencies? 
Metric 2.2.1 Dependency depth (DD) 

Goal 3 To compare results on intraprocedural feature depen- 
dency detection using TypeChef with previous work based on 
srcML 
Question 3.1 How the results of the current study compare 

with the previous ones? 
Metric 3.1.1 Number of functions with intraprocedural de- 

pendencies in the previous study 
Metric 3.1.2 Number of functions with intraprocedural 

dependencies in the current study 
With Goal 1 we intend to verify how often different types of 

feature dependencies (intraprocedural, global, and interprocedural) 
exists in program families. 

In the next three questions we express feature dependency oc- 
currence as the number of functions with feature dependencies, 
to be consistent with our previous work [8] . We also summarize 
these results by reporting the mean, standard deviation, median 
and interquartile range (IQR). This way, we can better estimate 
how often families contain dependencies and what is the disper- 
sion of each metric among the families. 

To answer Question 1.1 , we count the number of functions with 
preprocessor directives, such as #ifdef , #elif or #else , and 
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the number of functions with intraprocedural dependencies for 
each family. These metrics allow us to calculate how often func- 
tions with preprocessor directives have intraprocedural dependen- 
cies. 

To answer Question 1.2 , we count the functions with impact 
points regarding global dependencies, that is, direct references to 
global variables in a different f eature than its definition. We do 
not consider global variable assignments as maintenance points 
when they are inside a function, because we are unable to track 
the dataflow of global variables across functions, as we shall see in 
Section 5.7 . 

To answer Question 1.3 , as interprocedural dependencies di- 
rectly involves two functions, we count separately the number of 
functions containing maintenance points and the number of func- 
tions containing impact points regarding interprocedural depen- 
dencies for each family. Notice that the same function may con- 
tain both maintenance points and impact points, regarding dis- 
tinct interprocedural dependencies, so these values may overlap. 
We also count the number of functions containing either mainte- 
nance points or impact points, to total how many functions con- 
tribute to interprocedural dependencies. 

With Goal 2 we aim to better understand the characteristics of 
feature dependencies, in terms of directions and depths (in case of 
interprocedural dependencies). 

To answer Question 2.1 , we classify every dependency based 
on its direction (mandatory-to-optional, optional-to-mandatory, or 
optional-to-optional). Then we count the occurrences of dependen- 
cies for each direction, grouping by type of dependency. We use 
this metric in order to verify if some direction is particularly com- 
mon for some type of feature dependency. 

To answer Question 2.2 , we create a call graph [23] , having 
functions as nodes, and function calls as arcs pointing the callee 
function to the caller function. We also consider arguments place- 
ment and the presence condition of each function call when cre- 
ating the graph. We use the well-known depth-first search [24] al- 
gorithm to traverse the graph. We make an adjustment in the al- 
gorithm to allow revisiting nodes (but avoiding loops), in order to 
track all possible paths (from the shortest to the longest) from ev- 
ery node regarding functions with interprocedural dependencies. 
This information is important to foresee situations where an ar- 
gument in a function call may cause a problem due to an ex- 
isting dependency later on the code. Also, answering this ques- 
tion is important to better set up dataflow analysis tools, such as 
Emergo [2] (see Section 7.1 ). Considering that every interprocedural 
dependency may have many different paths, we present this data 
as a distribution, so one can easily see the relative likelihood for 
random dependency to have a given depth. Again, we summarize 
these results by presenting the mean, standard deviation, median 
and interquartile range (IQR). This way, we can better estimate the 
depth of interprocedural dependencies and its dispersion among 
the families. 

Finally, with Goal 3 we plan to establish a comparative analysis 
between the results of our current study and the results of our 
previous study on intraprocedural dependencies. 

To answer Question 3.1 , we use the data we gather in Ques- 
tion 1.1 and compare it to the results of our previous study on fea- 
ture dependencies, where we focused on intraprocedural depen- 
dencies using a different tool, which do not properly support non- 
disciplined annotations. By doing so, we intend to verify if previous 
results still hold. 

To better explain the metrics we compute, we refer to the code 
snippet in Fig. 12 . We extract this code snippet from libssh , 16 a 
multiplatform C library for SSH protocol implementations. The fig- 

16 http://www.libssh.org/ . 

ure depicts five functions from three different files, dh.c, packet.c , 
and packet1.c . These functions handle SSH cryptography and 
packet sending over a SSH session. Function ssh_crypto_init 
initializes the values for the global variables g and p . Func- 
tion ssh_packet_send_unimplemented calls function 
packet_send . Depending on the configuration regarding SSH 
protocol version ( WITH_SSH1 or !WITH_SSH1 ), packet_send 
may call either packet_send1 or packet_send2 . The 
code snippet also contains other four macros: HAVE_LIBZ 
and WITH_LIBZ , both related to zlib , 17 a compression library; 
HAVE_LIBGCRYPT , related to libgcrypt , 18 a cryptographic library; 
and DEBUG_CRYPTO , for debugging purposes. 

In the figure, there is an intraprocedural dependency in the 
function packet_send2 regarding variable currentlen , which 
is defined in a mandatory feature (see line 48) and later refer- 
enced in an optional configuration ( HAVE_LIBZ && WITH_LIBZ , 
see line 52). Thus, the direction of this dependency is mandatory- 
to-optional. 

There are two global variables, g and p , both declared in 
a mandatory section of code (see lines 1 and 2) and refer- 
enced multiple times within the function ssh_crypto_init . 
We have global dependencies regarding both variables, as func- 
tion ssh_crypto_init references them in an optional config- 
uration ( HAVE_LIBGCRYPT , see lines 10 − 12 ). The direction of 
these global dependencies is also mandatory-to-optional. 

In addition, notice that there are four functions involved 
with interprocedural dependencies. Considering line 23 as a 
maintenance point, we may impact lines 29 and 30 in 
another function: packet_send . This happens due to the 
data from the session variable that flows out the function 
ssh_packet_send_unimplemented and flows into the func- 
tion packet_send . As the impact points in packet_send are 
in an optional configuration ( WITH_SSH1 ), we have two interpro- 
cedural dependencies involving both functions (as there are two 
distinct pairs of a maintenance point and an impact point). The di- 
rection of both dependencies is mandatory-to-optional. Notice that 
the reference to variable session at line 33 does not result in a 
dependency among features: both maintenance and impact points 
are in the mandatory feature. Furthermore, considering line 30 as 
another maintenance point, we may also impact line 40, implying 
in one more interprocedural dependency. Its direction is optional- 
to-optional, as both maintenance and impact points have different 
(and not true ) presence conditions. Finally, when considering line 
33 as a maintenance point, we may impact line 52, resulting in 
another mandatory-to-optional interprocedural dependency. 

Regarding dependency depths, we track all paths 
across functions to interprocedural dependencies. For in- 
stance, we have two interprocedural dependencies involv- 
ing functions ssh_packet_send_unimplemented and 
packet_send . From ssh_packet_send_unimplemented 
to packet_send thedepth is one. As we have two interpro- 
cedural dependencies in these functions, we count this path 
( ssh_packet_send_unimplemented → packet_send ) 
twice. Furthermore, we have another interprocedural dependency 
involving functions packet_send and packet_send1 , and a 
last one involving functions packet_send and packet_send2 . 
In these dependencies, the maintenance points are within function 
packet_send , at lines 30 and 33. In both cases, the value of the 
argument of these function calls comes from another function: 
packet_send_unimplemented . Hence, besides the obvious 
paths packet_send → packet_send1 and packet_send 
→ packet_send2 , both with a depth of one, we also 

17 http://www.zlib.net/ . 
18 http://www.gnu.org/software/libgcrypt/ . 

http://www.libssh.org/
http://www.zlib.net/
http://www.gnu.org/software/libgcrypt/
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1.  static bignum g;
2.   bignum p;static
3.  
4.   ssh_crypto_init(void) {int
5.    …
6.    g = bignum_new();
7.    …
8.   HAVE_LIBGCRYPT#ifdef
9.    …
10.    (p == NULL) {if
11.     bignum_free(g);
12.     g = NULL;
13.     …
14.   }
15.   …
16. #endif
17.   …
18. }
19. 
20. int ssh_packet_send_unimplemented(…) {
21.  r;  int
22.   …
23.   r = packet_send(session);
24.   …
25. }
26. 
27.  packet_send(ssh_session session) {int
28.  WITH_SSH1#ifdef
29.  (session->version == 1) {  if
30.  packet_send1(session);    return
31.   }
32. #endif
33.    packet_send2(session);return
34. }
35.
36.  WITH_SSH1#ifdef
37.  packet_send1(ssh_session session) {int
38.   …
39.  DEBUG_CRYPTO#ifdef
40.   ssh_print_hexa(…, ssh_buffer_get_begin(session->out_buffer), …);
41. #endif
42.   …
43. }
44. #endif
45.
46.  packet_send2(ssh_session session) {static int
47.   …
48.   uint32_t currentlen = …;
49.   …
50.  defined(HAVE_LIBZ) && defined(WITH_LIBZ)#if
51.   …
52.   currentlen = buffer_get_rest_len(session->out_buffer);
53.   …
54. #endif
55.   …
56. }

Fig. 12. Code snippet from libssh . 
consider packet_send_unimplemented → packet_send 
→ packet_send1 and packet_send_unimplemented 
→ packet_send → packet_send2 , with a depth of two. 
In short, the average dependency depth for this example is 
(1 + 1 + 1 + 1 + 2 + 2) / 6 = 1 . 33 . 

Table 1 summarizes the metrics we compute for this example. 
4.2. Subject selection 

We analyze 40 program families written in C, ranging from 2, 
681 to 288, 654 lines of code. Although we do not systematically 
target diversity, we have some in our set of families [25] since our 
selection covers different domains, such as web servers, database 
systems, text editors, and programming languages. We select these 
subject systems inspired by previous work [6–11] . Although we 
want to compare our results with results from previous work [8] , 
our set of families is not exactly the same. In part because previ- 

ous work included some Java families, for instance, and we focus 
on C families in this study. Another reason is that we want to ana- 
lyze new families and discover whether previous results still apply 
to them. Moreover, although our set of families does not guaran- 
tee high representativeness [25] , we include some well-known and 
mature program families used in industrial practice. We present 
more details on each family in Table 2 . 
4.3. Instrumentation 

To compute the metrics we consider, we rely on TypeChef [12] , a 
variability-aware type checking utility, to create an Abstract Syntax 
Tree (AST) from each source file. TypeChef can parse C code con- 
taining #ifdef directives without generating all possible variants; 
instead, it creates an AST that preserves all variability information, 
having each preprocessor directive as a node in the tree. Previous 
studies [6,8,11] use srcML [26] to create ASTs represented in the 
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Table 1 
Metrics summary for the code snippet in Fig. 12 . We do not consider Goal 3 and its question and metrics, due to this 
being a illustrative example. 

Goal Question Metric Value 
Goal 1 (Dependencies occurrence) Question 1.1 (Intraprocedural) Metric 1.1.1 (FDi) 4 (80%) 

Metric 1.1.2 (FIntra) 1 (20%) 
Metric 1.1.2 (FIntra / FDi) 1 (25%) 

Question 1.2 (Global) Metric 1.2.1 (FGRef) 1 (20%) 
Metric 1.2.2 (FGlobal) 1 (20%) 
Metric 1.2.3 (FGlobal / FGRef) 1 (100%) 

Question 1.3 (Interprocedural) Metric 1.3.1 (FM) 2 (40%) 
Metric 1.3.2 (FI) 3 (60%) 
Metric 1.3.3 (FIntra) 4 (80%) 

Goal 2 (Further characteristics) Question 2.1 (Direction) Metric 2 .1.1 (M → O) 7 (87 .5%) 
Metric 2 .1.2 (O → M) 0 (0%) 
Metric 2 .1.3 (O → O) 1 (12 .5%) 

Question 2.2 (Depth) Metric 2.2.1 (DD) 1.33 ± 0.47 
Table 2 
Subject characterization. 

Family Version Application domain LOC Functions Files TD 
apache 2 .4.3 Web server 144,768 3910 362 1 .51 ± 1.17 
atlantis 0 .0.2.1 Operating system 2681 117 103 1 .25 ± 0.52 
bash 2 .01 Command language interpreter 44,824 1647 138 1 .80 ± 1.10 
bc 1 .03 Calculator 5177 166 27 1 .24 ± 0.43 
berkeley db 4 .7.25 Database system 185,111 3468 580 1 .39 ± 0.82 
bison 2 .0 Parser generator 24,325 684 129 1 .70 ± 1.06 
cherokee 1 .2.101 Web server 63,109 1838 346 1 .57 ± 1.08 
clamav 0 .97.6 Antivirus 107,548 2072 377 1 .68 ± 1.40 
cvs 1 .11.21 Revision control system 76,125 1122 236 1 .45 ± 0.87 
dia 0 .96.1 Diagramming software 28,074 814 132 1 .06 ± 0.51 
expat 2 .1.0 XML library 17,103 543 54 1 .70 ± 1.01 
flex 2 .5.35 Lexical analyzer 16,501 277 41 1 .76 ± 1.27 
fvwm 2 .4.15 Window manager 102,301 2141 270 1 .27 ± 0.76 
gawk 3 .1.4 GAWK interpreter 43,070 745 140 1 .86 ± 1.17 
gnuchess 5 .06 Chess engine 9293 217 37 1 .86 ± 1.14 
gnuplot 4 .6.1 Plotting tool 79,557 1861 152 1 .90 ± 1.49 
gzip 1 .2.4 File compressor 5809 114 36 1 .46 ± 0.71 
irssi 0 .8.15 IRC client 51,356 2853 308 1 .20 ± 0.64 
kin 0 .5 Database system 64,120 1248 119 1 .31 ± 0.79 
libdsmcc 0 .6 DVB library 5453 100 30 1 .39 ± 0.57 
libieee 0 .2.11 IEEE standards for VHDL library 5323 197 27 2 .30 ± 1.98 
libpng 1 .0.60 PNG library 44,828 476 61 3 .16 ± 1.55 
libsoup 2 .41.1 HTTP library 40,061 1475 178 1 .01 ± 0.10 
libssh 0 .5.3 SSH library 28,015 943 125 1 .64 ± 0.94 
libxml2 2 .9.0 XML library 234,934 6009 162 2 .11 ± 1.51 
lighttpd 1 .4.30 Web server 38,847 1004 132 1 .34 ± 0.90 
lua 5 .2.1 Programming language 14,503 837 59 1 .80 ± 1.71 
lynx 2 .8.7 Web browser 80,334 1448 117 1 .92 ± 1.21 
m4 1 .4.4 Macro expander 10,469 216 26 2 .21 ± 1.41 
mpsolve 2 .2 Mathematical software 10,278 411 41 1 .27 ± 0.45 
mptris 1 .9 Game 4988 99 29 1 .73 ± 1.00 
prc-tools 2 .3 C/C++ library for palm OS 14,371 369 142 1 .19 ± 0.49 
privoxy 3 .0.19 Proxy server 29,021 478 67 1 .75 ± 1.03 
rcs 5 .7 Revision control system 11,916 299 28 1 .96 ± 1.27 
sendmail 8 .14.6 Mail transfer agent 91,288 861 243 1 .76 ± 1.08 
sqlite 3 .7.15.3 Database system 94,113 2612 134 1 .72 ± 0.99 
sylpheed 3 .3.0 E-mail client 83,528 2597 218 1 .34 ± 1.36 
vim 7 .3 Text editor 288,654 5600 178 2 .31 ± 1.42 
xfig 3 .2.3 Vector graphics editor 70,493 1689 192 2 .15 ± 2.20 
xterm 2 .9.1 Terminal emulator 50,830 989 58 2 .05 ± 1.72 

LOC : Number of lines of code; TD : Average number of macros per macro expression (tangling degree). 
XML format, but this tool usually fails when handling code with 
non-disciplined annotations [11] . Thus, it generates ill-formed XML 
files as a result. 

For instance, Fig. 13 presents a code snippet containing non- 
disciplined annotations. In the figure, the statement beginning at 
line 2 spans through lines 4 or 6, depending on macro A . So the 
full statement can be either int x = 2 + 3 or int x = 2 + 
4 . If we use srcML to generate an AST from this code, we would 
get an ill-formed XML, as shown in Fig. 14 . The XML depicted 

in this figure could not be parsed, since some of its tags do not 
nest correctly. More specifically, in the code snippet we have an 
#ifdef clause (see Fig. 13 , line 3) followed by an #else clause 
(see Fig. 13 , line 5). After srcML translates such directives to XML 
tags, we get a < cpp:ifdef > tag (see Fig. 14 , lines 19–23) and 
a misaligned < cpp:else > tag (see Fig. 14 , lines 30–33), posi- 
tioned after the closing tag < /decl_stmt > (see Fig. 14 , line 29). 

Since TypeChef supports such non-disciplined annotations with- 
out outputting invalid results, we believe that it is a better 
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1.  f(){void 
2.    x = 2int 
3.   A#ifdef
4.      + 3;
5.  #else
6.      + 4;
7.  #endif
8.  }

Fig. 13. Code snippet containing non-disciplined annotations. Notice that #ifdef 
and #else directives surround only part of the statement. 

1.  <function>
2.    <type>
3.      f<name> </name>
4.    </type>
5.    test<name> </name>
6.    ()<parameter_list> </parameter_list>
7.    <block>
8.      {
9.      <decl_stmt>
10.       <decl>
11.         <type>
12.           int<name> </name>
13.         </type>
14.         x<name> </name>
15.         <init>
16.           =
17.           <expr>
18.             2
19.             <cpp:ifdef>
20.               #
21.               ifdef<cpp:directive> </cpp:directive>
22.               A<name> </name>
23.             </cpp:ifdef>
24.             + 3
25.           </expr>
26.         </init>
27.       </decl>
28.       ;
29.     </decl_stmt>
30.     <cpp:else>
31.       #
32.       else<cpp:directive> </cpp:directive>
33.     </cpp:else>
34.     <expr_stmt>
35.       + 4<expr> </expr>
36.       ;
37.     </expr_stmt>
38.     <cpp:endif>
39.       #
40.       endif<cpp:directive> </cpp:directive>
41.     </cpp:endif>
42.     }
43.   </block>
44. </function>

Fig. 14. Ill-formed XML as generated by srcML due to a code with non-disciplined 
annotations. Notice that cpp: tags do not nest accordingly. 
solution for this task. Apart from TypeChef and srcML , other tools 
can generate ASTs from C source code files. Clang ’s APIs 19 and 
Eclipse CDT Parser , 20 for instance, can parse C code and extract an 
AST from it. However, such tools do not perform variability-aware 
analysis. Thus, we would have to define every possible combina- 
tion of macros to cover all the configuration space, rendering our 
analysis unfeasible. SuperC [27] , on the other hand, could be an al- 
ternative, since it preserves variability information in the AST. Nev- 
ertheless, since our previous studies were focused on error detec- 

19 http://clang.llvm.org . 
20 https://eclipse.org/cdt/ . 

tion [7,28] , we have been using TypeChef also due to its type check- 
ing capabilities, which SuperC lacks. 

In this work, we use TypeChef version 0.3.5 to create the ASTs 
for all program families source code files. We develop a tool to au- 
tomate both ASTs creation and dependencies computation. We use 
Java SE 7 to implement this tool. 
4.4. Operation 

We perform the empirical study using a 2 GHz quad-core In- 
tel Core i7-2630QM with 8 GB of RAM, running MS Windows 7 
Home Premium SP1 64-bit. We divide this study in two parts: 
dependency identification and dependency depth analysis. In the 
first part of the study, our tool analyzes the ASTs generated for 
all program families source code files, one at a time, searching 
for intraprocedural, global, and interprocedural dependencies in all 
functions of each family. We simplistically describe this strategy in 
Algorithm 1 . Notice that we present a simpler version of the ac- 
Algorithm 1 General algorithm for dependency search 

ASTS ← set of all abstract syntax trees of a program family 
FUNCTIONS ← set of all function definitions within the current AST 
VARIABLES ← set of all variables used within the current function 
CALLS ← set of all function calls to the current function 
USES(v) ← function that returns the set of all uses of the variable v 
DEFINITIONS(v) ← function that returns the set of all definitions of the 
variable v 
IS_LOCAL(v) ← function that returns true , if the variable v is a local 
variable; false , otherwise 
IS_GLOBAL(v) ← function that returns true , if the variable v is a global 
variable; false , otherwise 
IS_PARAMETER(v) ← function that returns true , if the variable v is a 
function parameter; false , otherwise 
PC(s) ← function that returns the presence condition of statement s 

1: for each ast in ASTS do 
2: for each function in FUNCTIONS do 
3: for each variable in VARIABLES do 
4: for each use in USES(variable) do 
5: if IS_PARAMETER(variable) then 
6: for all call in CALLS do 
7: if PC(use) ̸ = PC(call) then 
8: — There is an interprocedural dependency 
9: end if 

10: end for 
11: else ◃ The variable is either local or global 
12: for each definition in DEFINITIONS(variable) do 
13: if PC(definition) ̸ = PC(use) then 
14: if IS_LOCAL(variable) then 
15: — There is an intraprocedural dependency 
16: else if IS_GLOBAL(variable) then 
17: — There is a global dependency 
18: end if 
19: end if 
20: end for 
21: end if 
22: end for 
23: end for 
24: end for 
25: end for 
tual algorithm, to better explain its operation. Thus, it lacks any 
optimizations in favor of understandability. 

In the algorithm we traverse all ASTs for a program family, 
each corresponding to a source file. For each AST, we look for 
function definitions, or FunctionDef nodes. For every function, we 
get all variables being used within the function, represented by Id 
nodes (excluding those non-related to variables, belonging to func- 
tions or constants, for instance). For each variable, we search for 
all of its uses within the function, or all Id nodes with the same 
name. Then, we check the variable scope. If it is a function pa- 
rameter (that is, there is an Id node inside a ParameterDeclarationD 
node, for instance), we get all function calls ( FunctionCall nodes) 
in all ASTs, comparing the presence condition of each function call 
with the presence condition of the variable use. Every time such 

http://clang.llvm.org
https://eclipse.org/cdt/
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Fig. 15. Percentage of functions with preprocessor directives and intraprocedural dependencies. Notice that, for most families, more than half of functions with directives 
also have dependencies. 
presence conditions differ, we have an interprocedural dependency. 
Now, if the variable is not a function parameter, it must be either 
a local or global variable. So, we get all variable definitions (dec- 
larations, assignments, and increments/decrements, including var- 
ious different nodes) inside the current function, comparing their 
presence condition with the presence condition of the variable use. 
Once more, every time a definition and a posterior use have dif- 
ferent presence conditions, we have a dependency. This time, this 
dependency can be intraprocedural or global, depending on the 
variable scope (that is, if its declaration is inside or outside the 
function). Obviously, we do not consider cases where the presence 
condition of a variable definition and of its use results in a contra- 
diction when combined. For instance, if a variable has a presence 
condition A for its definition and !A for its use, we would not have 
a feature dependency. 

In the second part of the study, our tool analyzes each func- 
tion call which is a maintenance point to an interprocedural de- 
pendency to find out the maximum dependency depth. To do so, 
we check whether the function call argument comes from another 
function, thus being a parameter of the current function. If so, we 
then analyze the caller function, in a recursive manner. 

Next, we interpret and discuss the results of our empirical study 
to assess fine-grained feature dependencies. 
5. Results and discussion 

In this section, we answer the research questions based on the 
results of our empirical study and present the threats to validity. 
All results are available at the companion web site. 21 
5.1. Question 1.1: how often do program families contain 
intraprocedural dependencies? 

To answer this question, we use the number of functions with 
preprocessor directives (FDi) and the number of functions with in- 
traprocedural dependencies (FIntra) . Fig. 15 shows a bar chart with 
FDi and FIntra for all families, expressed as a percentage of the to- 
tal of functions we analyze. Notice that the bars in the chart are 
superimposed, so the height of FDi also includes the height for FIn- 
tra . This way, we can also get an idea on how many of the func- 
tions with directives have intraprocedural dependencies, by com- 
paring both bars for a given family. According to the chart, both 

21 http://www.iranrodrigues.com.br/ist2016 . 

metrics differ considerably depending on the family. For instance, 
only 1.36% of libsoup functions have preprocessor directives ( FDi ), 
while Vim have preprocessor directives in 37.25% of its functions. 
Following the convention “average ± standard deviation”, our re- 
sults show that 10.09% ± 8.74% of the functions of all families have 
preprocessor directives within. However, due to the great variation 
and the heterogeneity of data distribution for this and the next 
metrics, we also opt to report results using a robust measure of 
central tendency and statistical dispersion. The median for FDi in 
all families is 7.67%, while its interquantile range (IQR) is 10.56%. 

Regarding FIntra , while mpsolve has no intraprocedural depen- 
dencies, this metric reaches 17.04% on libxml2 , and 18.77% on Vim . 
Considering all families, there are intraprocedural dependencies in 
5.79% ± 5.53% of their functions. The median for FIntra over all 
families is 4.03%, while its IQR is 5.94%, characterizing a high dis- 
persion once more. 

Notice that the values for FIntra are rather low because we con- 
sider the number of functions with dependencies over the total of 
functions. If we consider only the number of functions with direc- 
tives, this number grows substantially. For instance, mptris family 
has intraprocedural dependencies in 14.14% of its functions. How- 
ever, 82.35% of its functions with preprocessor directives also have 
intraprocedural dependencies. So, by dividing the total of functions 
with intraprocedural dependencies by the total of functions with 
preprocessor directives ( FIntra/FDi ) we have a better estimate of 
the dependency occurrence, because only functions with directives 
can possibly have intraprocedural dependencies. This way, when 
maintaining code with preprocessor directives, the likelihood of 
finding a dependency increases. That is, the probability of finding 
intraprocedural dependencies randomly picking a function, for in- 
stance, is greater if we consider only the functions with prepro- 
cessor directives than if we consider all functions for a program 
family. Our data shows that 51.44% ± 17.77% of the functions with 
directives also have intraprocedural dependencies. The median for 
FIntra/FDi is 54.87% and its IQR is 15.11%. Therefore, intraprocedu- 
ral dependencies are rather common in the product families we 
analyze. 

Table A.1 shows all the values for FDi, FIntra, and FDi/FIntra for 
all the families we analyze. 
5.2. Question 1.2: how often do program families contain global 
dependencies? 

To answer this question we use the number of functions ref- 
erencing global variables (FGRef) and the number of functions with 

http://www.iranrodrigues.com.br/ist2016
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Fig. 16. Percentage of functions referencing global variables and with global dependencies. Notice that the occurrence of global dependencies is relatively low. 
global dependencies (FGlobal) . Fig. 16 shows a bar chart with su- 
perimposed bars representing FGRef and FGlobal . Notice that, once 
more, the results vary vastly depending on the family we analyze. 
Some families do not make much use of global variables. Lua , for 
instance, has only 4.06% of its functions referencing global vari- 
ables ( FGRef ). On the other hand, gzip has a FGRef of 68.42%, mean- 
ing that the majority of its functions references global variables. 
Our results show that 27.24% ± 14.42% of the functions do refer- 
ence global variables. Median and IQR for FGRef are, respectively, 
26.93% and 19.81%. 

The number of functions with global dependencies ( FGlobal ) 
also vary across the families we analyze. According to the chart, 
five of the families do not have any global dependencies: Atlantis, 
bc, Expat, libsoup , and Lua . Families with the highest values for 
FGlobal include Vim (15.89%) and libxml2 (15.14%). Considering all 
families, 3.09% ± 3.95% of the functions have global dependencies. 
Median and IQR are 1.52% and 2.08%, respectively. However, these 
percentages relate to the total of functions. For instance, from all 
Vim functions, 15.89% have global dependencies. We cannot restrict 
this number to consider only functions with preprocessor direc- 
tives, as we do in Section 5.1 , since global dependencies might oc- 
cur even in functions without such directives. 

Now, if we consider only functions which reference global vari- 
ables, we can better estimate the global dependency occurrence. 
For instance, mptris has global dependencies in 8.08% of its func- 
tions. But, when considering only the functions which reference 
global variables, 42.11% of them have global dependencies. We find 
this value by diving the number of functions with global depen- 
dencies by the number of functions referencing global variables 
( FGlobal / FGRef ). Our results show that 11.90% ± 12.20% of the func- 
tions which refer to global variables also have global dependencies. 
Median and IQR for the FGlobal / FGRef ratio are 7.65% and 13.19%, 
revealing the high dispersion of data. Moreover, we conclude that 
this type of dependency is less common in the families we an- 
alyze. Nevertheless, this value is a lower bound. As we do not 
track the dataflow of global variables across functions, we cannot 
consider all possible maintenance points of a global variable, such 
as assignments or increments/decrements, that may happen inside 
functions. We further discuss this limitation in Section 5.7 . 

Moreover, we cannot neglect such dependencies, because de- 
pending on the family, the total of global dependencies may be 
reasonably higher. Besides, Section 3.2 shows that this type of de- 
pendency can be as problematic as any other dependency. Addi- 
tionally, such dependencies might be hidden as different files can 
refer to the same global variable. 

Table A.2 shows the values for FGRef, FGlobal and FGRef/FGlobal 
for all families. 
5.3. Question 1.3: how often do program families contain 
interprocedural dependencies? 

To answer this question, we use the number of functions with 
maintenance points regarding interprocedural dependencies (FM) , the 
number of functions with impact points regarding interprocedural de- 
pendencies (FI) , and the number of functions with interprocedural de- 
pendencies (FInter) . As an interprocedural dependency involves two 
functions, one containing a maintenance point and the other con- 
taining an impact point, we refer to functions with interprocedural 
dependencies ( FInter ) as the functions containing either a mainte- 
nance point or an impact point regarding interprocedural depen- 
dencies. Fig. 17 shows a bar chart with grouped bars representing 
FM and FI , and dots over the bars representing FInter for the fam- 
ilies we analyze. Not surprisingly, again these values vary signifi- 
cantly across the families. FM , for instance, ranges from 0.12% to 
56.69%, in Lua and Privoxy , respectively. Considering the families 
we analyze, 18.96% ± 16.62% of the functions have maintenance 
points regarding interprocedural dependencies. In other words, this 
is the number of functions containing function calls that lead to 
interprocedural dependencies. Median and IQR for FM are, respec- 
tively, 12.81% and 23.56%, denoting its high variation. 

In most families we analyze, FI is lower than FM , with some 
exceptions. Lua has the same value for FM and FI : 0.12%, which is 
also the smallest value for the FI in all families. The highest FI is 
in libpng , where 42.65% of its functions contain impact points re- 
garding interprocedural dependencies. Our data reveal that 12.14% 
± 10.59% of the functions references dependent variables in inter- 
procedural dependencies. Median for FI is 8.98%, while its IQR is 
11.57%. This means that FI varies slightly less than FM in the fami- 
lies we analyze. 

According to Fig. 17 , the family with the lowest FInter is once 
again Lua , with 0.24% of its functions with interprocedural depen- 
dencies. On the other hand, Vim is the family with the highest 
number of functions with interprocedural dependencies: 67.34%. 
Considering all families, the average number of functions with in- 
terprocedural dependencies is 25.98% ± 19.99%. Median and IQR 
for FInter are 20.49% and 30.85%, showing that this metric has the 
highest variation among all others regarding dependency occur- 
rence. 

All these metrics consider all the functions for each family. 
Once more, we cannot restrict them to consider only the functions 
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Fig. 17. Percentage of functions with maintenance points, impact points, and interprocedural dependencies. Notice the high variation of FInter . 

Fig. 18. Dependency occurrence distributions by type. 
with preprocessor directives. The reason is that both maintenance 
points and impact points can be in a mandatory feature, provided 
that their counterparts are in optional features. Nevertheless, we 
conclude that interprocedural dependencies are reasonably com- 
mon in the families we analyze. This may be a problem if devel- 
opers are not aware of the existence of such dependencies in the 
code they maintain. Problems regarding interprocedural dependen- 
cies may involve more than one file, or even different program 
families (see Section 3.3 ), making maintenance tasks in the pres- 
ence of such dependencies rather risky. 

Table A.3 shows the values for FM, FI , and FInter for all the fam- 
ilies we analyze. 

To better compare intraprocedural, global, and interprocedu- 
ral dependency occurrence in all families, we plot data regarding 
FIntra/FDi, FGlobal/FGRef , and FInter using both an adjusted box- 
plot [29] ( Fig. 18 a) and a beanplot [30] ( Fig. 18 b) chart. While the 
former clearly shows the values for the first and third quartiles 
(the bottom and the top of the box, respectively) and the median 
(the band inside the box), the latter shows variation in between 
the values, alongside the average for each bean (the line inside 
the bean) and the overall average (the dotted line). Both charts 
show that intraprocedural dependency is the most common type 
of dependency, which has also an almost-symmetrical distribution. 
Interprocedural dependency follows intraprocedural as the second 
most common type. Besides, interprocedural dependency has the 
greatest variation, with the highest boxplot. Global dependency is 
relatively uncommon, as its 75th percentile is 15.58%, meaning that 
in 75% of the families its occurrence is less than or equal to 15.58%. 

5.4. Question 2.1: how often do dependencies of different directions 
(mandatory-to-optional, optional-to-mandatory, and 
optional-to-optional) occur? 

To answer this question, we use the number of mandatory- 
to-optional dependencies (M → O) , the number of optional-to- 
mandatory dependencies (O → M) , and the number of optional-to- 
optional dependencies (O → O) . 

Fig. 19 shows the distribution of dependency directions accord- 
ing to their types using a beanplot chart. Notice that the distri- 
bution of intraprocedural dependencies resembles the distribution 
of global dependencies, with pretty similar averages (the horizon- 
tal lines) and estimated density (the bean shape) for each bean. 
In both types, most of dependencies are mandatory-to-optional 
(M → O), followed by optional-to-optional (O → O) dependen- 
cies. Only few are optional-to-mandatory (O → M). These results 
mean that developers create most of intraprocedural and global 
dependencies by defining local and global variables in a manda- 
tory feature, and referencing them in an optional feature. In such 
cases, these dependencies do not cause build errors (regarding un- 
declared variables), but they can trigger compilation warnings re- 
garding unused variables, which is a minor problem. We can also 
infer that in such types of dependency, when developers define 
variables in optional features, they reference such variables much 
more in another optional feature than in a mandatory one. 

One might wonder if this situation can cause compilation er- 
rors. However, this depends on a number of factors, such as con- 
figuration parameters or the family feature model, for instance. To 
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Fig. 19. Dependency directions distribution by type. 
1.   HAVE_LIBGCRYPT#ifdef
2.    …
3.    gcry_sexp_t dsa = NULL;
4.    …
5.  defined HAVE_LIBCRYPTO#elif 
6.    DSA *dsa = NULL;
7.    …
8.    BIO *bio = NULL;
9.  #endif
10.   …
11. HAVE_LIBCRYPTO#ifdef 
12.   (bio == NULL) {if 
13.     …
14.   }
15. #endif
16.   …
17.   privkey->dsa_priv = dsa;

Fig. 20. Code snippet from libssh . 
better explain this, we refer to the code snippet in Fig. 20 . This 
code contains intraprocedural dependencies regarding variables 
dsa and bio . The variable dsa has two definitions. The presence 
condition of its first definition (see line 3) is HAVE_LIBGCRYPT . 
The presence condition of its second definition (see line 6) is 
!HAVE_LIBGCRYPT && HAVE_LIBCRYPTO . Despite such defini- 
tions occurring only in optional features, the variable dsa is ref- 
erenced in a mandatory section of the code (see line 17). If we 
do not define either HAVE_LIBGCRYPT or HAVE_LIBCRYPTO we 
would have an undefined variable error. Now, look at bio defini- 
tion at line 8. Its presence condition is !HAVE_LIBGCRYPT && 
HAVE_LIBCRYPTO . This variable is later referenced at line 12, 
in a different presence condition: HAVE_LIBCRYPTO . Now, we 
would face a similar compilation error if we define both macros 
at once. In this case, libssh configure step prevents the occur- 
rence of such errors, ensuring that either HAVE_LIBGCRYPT or 
HAVE_LIBCRYPTO is available [7] . 

The distribution of interprocedural dependencies is very differ- 
ent (see Fig. 19 ). Regarding interprocedural dependencies, optional- 
to-mandatory is the most common direction, followed closely 
by mandatory-to-optional. Optional-to-optional dependencies are 
rather uncommon. These results show that developers introduce 
the majority of interprocedural dependencies by calling functions 
from optional features which reference their parameters in a 
mandatory feature. Besides, the opposite situation, that is, calling a 
function from a mandatory feature which references its parameters 
in optional features, is also common. 
5.5. Question 2.2: what is the dependency depth distribution for 
interprocedural dependencies? 

Fig. 21 shows an adjusted beanplot summarizing the depen- 
dency depths for program families. According to the figure, bc, 
Flex , and MPSolve do not have interprocedural dependencies with 

a depth greater than one. In such dependencies, functions share 
data directly from the caller function to the callee function. On 
the other hand, Berkeley DB, libxml2 , and xterm have relatively high 
values for their dependency depths. The highest outlier for Berke- 
ley DB , for instance, is 23, meaning that this family shares data 
across 23 functions before reaching an impact point of a particular 
interprocedural dependency. Notice that the distribution of depen- 
dency depths for Lua has even higher values, with depths as high 
as 29. However, our results for Lua are still indefinite. This particu- 
lar family has a very high number of chained functions, which our 
tool cannot handle in our current equipment, due to memory con- 
straints. Therefore, we limit the maximum number of paths of the 
call graph for Lua functions, thus obtaining a lower bound for the 
maximum depth. 

Fig. 23 depicts individual histograms of dependency depths 
for each family we analyze, showing more detail on dependency 
depths distributions. In such charts, the vertical dashed line indi- 
cates the average depth in the family. While most of families have 
the majority of interprocedural dependencies with a depth of one, 
some histograms look like a bell-shaped curve. Take libxml2 as an 
example: most of its dependencies have depths above 10, while 
few have a depth of one. Thus, although most of interprocedural 
dependencies have a depth of one, there is no single pattern that 
fits into all the families we analyze. 

Fig. 22 shows a adjusted boxplot summarizing all the depths for 
the interprocedural dependencies of all the families we analyze. 
According to the chart, the 25th and 75th percentile are, respec- 
tively, 6 and 12. Thus, half of the paths to interprocedural depen- 
dencies have depths between 6 and 12. However, the other half of 
paths have depths between 1 and 6, or above 12, up to 29, mean- 
ing that this metric also varies greatly. Considering all families, the 
dependency depth is 8.69 ± 4.11. Median and IQR are, respectively, 
9 and 6. 

High values for dependency depths may hinder developer work 
when maintaining such chained functions, especially when the de- 
veloper is unaware of the existence of those dependencies. In these 
cases, modifying a variable do not impact only the current func- 
tion, but all the functions that use that variable from that point on. 
Moreover, the greater the depth, the harder it is for the developer 
detect the dependency, therefore, it becomes easier to introduce a 
bug. Introducing a bug in such way may hamper its posterior cor- 
rection, since it may be difficult to trace it back to the source of 
the problem. 

Table A.4 summarizes the dependency depths for all interpro- 
cedural dependencies we collect. 
5.6. Question 3.1: how the results of the current study compare with 
the previous ones? 

To answer this question, we compare the number of in- 
traprocedural feature dependencies we obtain in this work with 
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Fig. 21. Dependency depth distribution in the program families. 
the number of such dependencies reported in our previous 
work [8] . 

Our current study has 17 families in common with the previ- 
ous study, so we can establish a direct comparison among these 
families: Apache, Berkeley DB, Cherokee, ClamAV, Dia, gnuplot, Irssi, 
libxml2, lighttpd, Lynx, Privoxy, Sendmail, SQLite, Sylpheed, Vim, Xfig , 
and xterm . 

Both studies also use similar metrics to gather information 
regarding intraprocedural dependencies. For instance, both stud- 
ies present intraprocedural dependency occurrence as the ratio of 
the number of functions with intraprocedural dependencies to the 
number of functions with preprocessor directives. This way, we 
now compare the values of these metrics across the two studies. 

Fig. 24 b shows a beanplot featuring the distribution of the num- 
ber of functions with preprocessor directives on each family. The 
left side of the bean shows our current results, while the right 
side of the bean shows results from previous work. Although the 
overall shape of the bean is nearly symmetrical, notice that its 
left side stretches upwards beyond its right side, meaning that in 
our current study we have more functions with dependencies. This 
is because our previous study did not account for functions with 
non-disciplined annotations, due to limitations of srcML . Now that 
we consider such functions, we obtain a slightly higher number of 
functions with preprocessor directives. Considering the 17 families 
both studies have in common, our previous study reports prepro- 
cessor directives in 12.25% ± 7.63% of the functions, with a me- 
dian of 10.64% and an IQR of 9.16%. Our current results show that 
there are preprocessor directives in 13.23% ± 10.00% of such fam- 
ilies, with values for median and IQR of 11.01% and 9.28%, respec- 
tively. 

Fig. 24 a shows a beanplot with distribution of the number 
of functions with intraprocedural dependencies on each family. 
Once more, the left side of the bean shows results from our cur- 
rent study, and the right side shows previous work results. Since 
we now consider functions with non-disciplined annotations, one 

might expect that we catch a higher number of dependencies in 
our current study. However, the right side of the bean presents 
slightly higher values, meaning that our previous study reports 
more dependencies than our current study. This is because the no- 
tion of intraprocedural dependency in our previous study also in- 
cludes dependencies regarding function parameters. For instance, 
Fig. 25 shows a function from Vim which our previous study con- 
siders as having an intraprocedural dependency. Notice that vari- 
able filename is a function parameter (see line 1) in a manda- 
tory feature and is used in an optional feature (see line 4). In our 
current study, we do not consider this an intraprocedural depen- 
dency, but an interprocedural dependency, considering that there 
is a call to this function somewhere else in the code. Thus, consid- 
ering that the notion of intraprocedural dependency is stricter in 
our current study, we find less intraprocedural dependencies this 
time. Considering only the common families, previous study re- 
ports intraprocedural dependencies in 9.12% ± 6.63% of functions, 
with a median of 7.66% and an IQR of 6.64%. Our current study re- 
ports intraprocedural dependencies in 7.51% ± 5.78% of functions. 
Median and IQR are, respectively, 6.23% and 6.98%. 

Finally, when we consider the number of functions with in- 
traprocedural dependencies among the functions with preproces- 
sor directives, by dividing these values, the difference between 
both studies increases. Fig. 24 c shows a beanplot with the distri- 
bution of this relative intraprocedural dependency occurrence on 
each family. The asymmetry is now more noticeable, with the right 
side of the bean featuring higher values. Since previous study con- 
siders more dependencies and less directives, consequently this ra- 
tio would be higher. Among the common families in both studies, 
previous work report 69.83% ± 16.33% of functions with intrapro- 
cedural dependencies over functions with preprocessor directives. 
Median and IQR for this metric are 71.52% and 17.25%, respectively. 
Our current results for these families show that 55.21% ± 11.89% of 
functions with directives have intraprocedural dependencies, with 
a median of 52.75% and an IQR of 14.11%. Since our results on in- 
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Fig. 22. Dependency depths summary considering all program families. 

traprocedural dependencies in this subset of families are close to 
those regarding all the 40 families (see Section 5.1 ), we conclude 
that the results of the previous work would also apply to our en- 
tire set, improving its external validity. 

Fig. 26 shows a bar chart featuring this last metric for each 
family. Notice that the bars regarding previous study results have 
consistently higher values than the corresponding ones from cur- 
rent study, with few exceptions. For instance, Sendmail has more 
intraprocedural dependencies in our current study. This is due to 
its high number of non-disciplined annotations [11] , which prevent 
our previous study to detect dependencies like the one in Fig. 27 . 
In this figure there is a dependency regarding variable sigerr . 
This variable is defined in a mandatory feature (see line 2), then 
initialized in an optional feature (see line 7) and later used in a 
mandatory feature once more (see line 10). As the preprocessor 
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Fig. 23. Dependency depth distribution in the program families. 
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Fig. 24. Comparison on metrics regarding intraprocedural dependencies. 
1.  workshop_show_file( *filename) {void char 
2.   WSDEBUG_TRACE#ifdef
3.    …
4.    wstrace(…, filename);
5.  #endif
6.    …
7.  }

Fig. 25. Code snippet from Vim showing a dependency classified as intraprocedural 
by previous study [8] . In this work we do not consider such dependency intrapro- 
cedural, due to the dependent variable being a function parameter. 
directives #if and #else annotates only part of an if block (see 
lines 4-8), this function could not be properly parsed by srcML . 

In summary, putting aside the limitations of srcML in our previ- 
ous study and the stricter definition of intraprocedural dependen- 
cies from our current study (which excludes function parameters), 
we may realize that intraprocedural dependencies are still frequent 
in the subset of families common to both studies. Although our 
current study reports a lower number of intraprocedural depen- 

1.   * mi_signal_thread(…) {static void
2.    sigerr;int 
3.    …
4.   defined(SOLARIS) || defined(__svr5__)#if
5.    ((sig = sigwait(&set)) < 0)if 
6.  #else
7.    ((sigerr = sigwait(&set, &sig)) != 0)if 
8.  #endif
9.    {
10.     (sigerr <= 0)if 
11.       …
12.   }
13.   …
14. }

Fig. 27. Code snippet from Sendmail featuring a false negative of previous study [8] . 

dencies in such families, both studies agree on the fact they are 
present in the majority of the functions with preprocessor direc- 
tives. Moreover, our tool built based on TypeChef proved to be more 
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Fig. 26. Comparison of results from this study with results from previous study [8] . Here we consider the percentage of functions with intraprocedural dependencies among 
the total of functions with preprocessor directives. 
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reliable than previous one built over srcML , in the sense it correctly 
reports dependencies that are false negatives of previous work. 
5.7. Threats to validity 

Now, we present the threats to validity. To structure this sec- 
tion, we follow the Wohlin et. al. validity system [31] . 

Construct validity. We do not have access to the specification 
of valid configurations (the feature model) of the families we ana- 
lyze. This raises two issues: first, we cannot know whether a macro 
in a macro expression refers to an actual feature. So, we might 
consider a dependency between different fragments of the same 
feature as a feature dependency because such fragments use dif- 
ferent macros. Second, we cannot ensure that all the dependencies 
we find in our study arise in valid configurations. 

Since we consider that macros in a macro expression refer to 
actual features, the existence of a negation within the macro ex- 
pression might also pose a threat. For instance, a macro expression 
#if !defined(A) does not map into an !A feature. In other 
words, the negation of a feature is not a different f eature. However, 
such dependencies between macro expressions still could cause 
problems, as any other feature dependency. For this reason, we still 
consider them in this work. 

Internal validity. Our analysis of global dependencies is not ex- 
haustive. We do not consider all possible maintenance points on 
global variables that may occur inside functions. This is because we 
cannot determine if a global variable reference (an impact point) 
in a function takes place before or after a particular assignment (a 
maintenance point) inside another function. As we do not track the 
dataflow of global variables across functions, we limit to consider 
only the variable definition as a possible maintenance point. Thus, 
we have a lower bound. The real number of global dependencies 
might be higher. 

Also, our results for dependency depths for Lua are not com- 
plete. While the depth computation for every other family occurs 
without hassle, our tool cannot finish it for Lua . We attribute this 
problem to the high number of chained functions in Lua , as virtu- 
ally all of its functions share a parameter regarding the state of Lua 
interpreter. Our tool completes this task in a few minutes for most 
of the families. With Lua , on the other hand, our tool spends a 
week running without finishing its computations. To alleviate this 
threat, we limit the call graph size when computing depths for Lua , 
in order to get a lower bound, at least. Even though limited, depen- 
dency depths for Lua are the greatest among families we analyze. 

Another point is that our tool does not know anything about 
the compiler linking process. Therefore, we cannot determine if a 
particular function accesses a given resource (such as a global vari- 
able or another function) in another file. Thus, we consider that 
every function can access any global variable and function simply 
by referencing it. This can be problematic if some program defines 
global variables or functions with duplicate names across its files, 
since our tool is unable to link these resources properly. 

Our analysis depends on the TypeChef C parser, which generates 
an Abstract Syntax Tree (AST) for each source code file we provide. 
The resulting AST is not always completely equivalent to the orig- 
inal code, that is, TypeChef may refactor a code before generating 
the AST. This is necessary since TypeChef cannot directly map some 
non-disciplined annotations to individual AST elements. We also 
find that TypeChef do not handle well #ifdef blocks that contain 
one or more #elif clauses and no #else , producing nodes with 
incorrect presence conditions. This is a minor problem, since we 
find that in all the families we analyze, such situation only occur 
in 0.43% of annotations. Therefore, we may face false positives and 
false negatives in our results, since we analyze the ASTs, not the 
original files. 

Also, we rely on a previous technique [7] to restrict the analysis 
to program families code only, excluding external libraries, by re- 
moving their #include directives. In this approach, we still keep 
the header files of the program families, but exclude the exter- 
nal ones. Considering that external libraries might be platform- 
specific, resolving such dependencies would be a manual and time- 
consuming task, hindering our analysis. To prevent most of the 
syntax errors that the suppression of these libraries would cause, 
we generate stubs using C/C++ Development Tooling ( CDT ) to re- 
place all needed macros and types, placing these stubs in a sepa- 
rate header file. This process is semi-automatic, because CDT might 
not identify all types and macros, so we add them manually when- 
ever possible. Therefore, sometimes we are not able to resolve all 
missing resources and TypeChef cannot successfully generate the 
AST for some files. We present the rates of successful generation 
of ASTs for all families in Table A.5 . Our data show that TypeChef 
successfully parses 97.70% of all source code files we select in the 
study, which is an acceptable ratio. After a manual inspection of 
the files that TypeChef rejects, we conclude that they cannot sub- 
stantially change the results, thus alleviating this threat. 

External validity. In our study we analyze 40 C program fam- 
ilies from different sizes and domains. These families are well- 
known in the industry. Their communities are very active, despite 
some of them exist for many years. Nevertheless, our results might 
not hold to other families, as some of them have very distinc- 
tive results. The high standard deviation and interquartile range 
found in some results, for instance, the number of functions with 
global dependency, evidence their high variation. For that reason, 
we should not use these results in direct comparison among dif- 
ferent families. 
6. Consequences 

In this section, we present some of the consequences of our re- 
sults. First, we present evidence that global dependencies are far 
less common than intraprocedural and interprocedural feature de- 
pendencies. Thus, any effort in developing tools and techniques to 
properly capture feature dependencies might focus firstly on in- 
traprocedural and interprocedural types. 

Second, our results might also benefit users of existing tools, 
such as Emergo [2] , a dataflow analysis tool that infers interfaces 
on demand (see Section 7.1 ). This tool performs feature-sensitive 
analyzes that rely on a call depth parameter to detect interpro- 
cedural dependencies. Its performance depends on user input of 
such parameter. Low values might prevent the detection of some 
dependencies, while high values might make analyzes slow. Since 
we provide the dependency depth distribution, users can better set 
up such a tool, improving its performance. 

Previous work [13,28,32] presented some variability bugs and 
issues found in program families. A significant amount of these 
bugs involves the presence of feature dependencies like the ones 
we present in our study. So, the third consequence we present is 
that we expect our results could guide the development of tools 
to go beyond feature dependency detection, but also catch exist- 
ing bugs and issues that might arise in certain configurations due 
to feature dependencies. For instance, the tool could use pattern- 
matching to find potential variability issues due to feature depen- 
dencies in a software repository. Such patterns might include, for 
instance, variables declared in an optional feature but used in a 
mandatory feature. Assuming that such optional feature is not in- 
cluded in the compilation, we would face an undeclared variable 
error. 

Fourth, in addition to searching for existing bugs regarding fea- 
ture dependencies, we also believe our results might favor the de- 
velopment of tools to avoid the introduction of such bugs. This 
way, the same patterns that could be used to find current bugs 
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could also be useful to warn about a variability bug as soon as the 
developers adds it. In this sense, the tool could run as an IDE plug- 
in, for instance, in an interactive manner checking the code as the 
developer types it. 
7. Related work 

In this section, we present the related work regarding feature 
dependencies ( Section 7.1 ), variability bugs ( Section 7.2 ), and C pre- 
processor usage ( Section 7.3 ). 
7.1. Feature dependencies 

Prior studies investigated the occurrence of feature dependen- 
cies in preprocessor-based families. Ribeiro et al. presented an em- 
pirical study on the impact of feature dependencies during main- 
tenance of software families [8] . This study comprised 43 fami- 
lies written in C and Java. They developed a tool based on sr- 
cML [26] to generate abstract syntax trees from source code and 
collect data regarding intraprocedural dependencies in such fami- 
lies. They found that 65.92% ± 18.54% of methods contain intrapro- 
cedural dependencies. In our study, we focus on families imple- 
mented in C, in a total of 40 software families. Instead of srcML, 
our tool uses TypeChef [33] , which is a more robust solution as 
it can handle code containing undisciplined annotations, which sr- 
cML cannot [11] . We extend their study by collecting data regard- 
ing three types of dependencies: besides intraprocedural, we con- 
sider global and interprocedural. In addition, we also classify the 
dependencies according to their direction, and identify the maxi- 
mum depth of the interprocedural dependencies. 

In another study, Ribeiro et al. [2] presented Emergo , a tool ca- 
pable of inferring interfaces from dataflow analysis on demand. 
Emergo uses emergent interfaces [34] to raise awareness of intrapro- 
cedural and interprocedural feature dependencies during the main- 
tenance of configurable systems. Later, Ribeiro et al. [3] conducted 
an experiment that showed that the awareness of feature depen- 
dencies decreases the effort and reduces errors on maintenance 
tasks. In our work, we present the depth distribution for interpro- 
cedural dependencies found on some software families. This infor- 
mation can possibly benefit Emergo and similar tools, as the call 
depth is a required parameter in the computing of emergent inter- 
faces. A low depth value may prevent the detection of some feature 
dependencies, while a high depth value may cause performance is- 
sues. Thus, we complement their work by providing the depth dis- 
tribution, which might be helpful to better set tools like Emergo . 

Queiroz et al. [35] analyzed the correlation between software 
complexity and feature dependencies in 45 preprocessor-based 
software families and product lines. Moreover, their study also 
pointed which preprocessor directives (such as #ifdef or #elif ) 
are responsible for the largest number of dependencies. While they 
classify dependencies by preprocessor directive, we perform a clas- 
sification by direction. Besides, their work comprised only intrapro- 
cedural dependencies, whilst our work also includes global and in- 
terprocedural dependencies. 

Cafeo et al. [36] conducted a comparative study of three pro- 
gramming techniques to implement feature dependencies and their 
impact on SPL development. Authors analyzed 15 releases of 
three SPLs in Java, comparing conditional compilation, Aspect Ori- 
ented Programming (AOP) [37] , and Feature Oriented Programming 
(FOP) [38] , assessing their contribution to instabilities caused by 
feature dependencies in such SPLs. In our work, we analyzed fam- 
ilies written in C. All of them use conditional compilation to im- 
plement variability, by using #ifdef and other preprocessor di- 
rectives. Although we do not assess the stability of such families, 
we quantify the occurrence of feature dependencies and bring evi- 
dence that these dependencies might induce to problems. 

Apel et al. [14] conducted an exploratory study on the nature 
of feature interactions in feature-oriented systems. In their work, 
they proposed a classification of feature interactions according to 
their order and visibility. Then, they presented preliminary data re- 
garding feature interaction occurrence in four real-world systems: 
Linux, BusyBox, GCC , and Apache . Our definition of feature depen- 
dency in our work corresponds to an internal, operational feature 
interaction, since we refer to the sharing of program elements and 
data among features. 
7.2. Variability bugs 

Some studies indicated that the indistinct use of C preproces- 
sor may degrade the understandability of the code, hampering 
its maintenance, and ultimately leading to the introduction of er- 
rors [4,5,15] . Recently, researchers investigated the occurrence of 
errors that variability might induce. Medeiros et al. [7] conducted 
an exhaustive search for syntax errors regarding preprocessor us- 
age on 41 product family releases and over 51 thousand commits 
of 8 program families. They built a tool based on TypeChef to parse 
the code and check for syntax errors in all possible configurations. 
Their results showed that such errors are not common in prac- 
tice. Later, Medeiros et al. [28] presented an empirical study on 
other types of configuration-related issues. They analyzed 15 pop- 
ular open-source families using TypeChef and found 39 issues re- 
garding undeclared and unused variables and functions. Of this to- 
tal, approximately 82% relates to the presence of feature depen- 
dencies. In our work, we also use TypeChef to perform variability- 
aware parsing. Likewise, we present some variability bugs regard- 
ing feature dependencies as motivating examples, but we do not 
focus on the identification of such errors. Instead, we focus on 
identifying and quantifying feature dependencies in software fam- 
ilies. 

Abal et al. [13] performed a qualitative study of 42 variability 
bugs found on the Linux kernel. As well as syntax errors, their 
study also includes semantic errors. They collected such bugs from 
bug-fixing commits to the Linux kernel repository. These bugs in- 
clude 30 feature-interaction bugs , bugs that arise as a result of fea- 
ture interactions. Once more, while we bring some motivation ex- 
amples with bugs regarding feature dependencies, the catalog of 
such bugs is not an objective of our work. It is important to em- 
phasize that these studies present a relatively small number of 
variability bugs. However, they consider only bugs that remain af- 
ter commits. Both studies are missing bugs detected during builds 
or tests, because they got fixed before committing the code. This 
way, we have no estimate on how many variability bugs show up 
during development and get readily fixed. 

Melo et al. [32] conducted a quantitative analysis of variabil- 
ity warnings in Linux. By analyzing more than 20,0 0 0 valid con- 
figurations on both a stable version and an in-development ver- 
sion of Linux, they classified a total of 40 0,0 0 0 compilation warn- 
ings. Most common warnings in stable and in-development ver- 
sions of Linux were due to unused function and unused variable, 
respectively. Although a feature dependency might trigger an un- 
used variable warning, if we define a feature that declares a vari- 
able, but do not define the feature that uses such a variable, they 
do not investigate the cause of those warnings. Likewise, in our 
study we detect and classify feature dependencies, but we do not 
infer what sort of problems they might cause. 
7.3. C preprocessor usage 

Several studies analyzed the usage of variability mechanisms 
of C preprocessor, cpp . Medeiros et al. [20] conducted an inter- 
view study regarding how practitioners perceive the C preproces- 
sor. They interviewed 40 developers, cross-validating their results 
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with data from a survey with 202 developers, repository mining, 
and previous studies. Their results show that the C preprocessor 
is still widely used to solve portability and variability problems. 
Besides, developers consider variability bugs due to preprocessor 
misuse easier to introduce, harder to fix, and more critical than 
other bugs. In our work we present actual variability bugs regard- 
ing the presence of feature dependencies. 

Ernst et al. [9] presented an empirical study concerning C pre- 
processor usage. They analyzed 26 C software families, collecting 
data regarding the occurrence of preprocessor directives and macro 
usage. They also measured to what extent macro dependences oc- 
cur in the analyzed families, that is, the dependence of a line of 
code on a macro. In our work, we analyze a broader set of C soft- 
ware families, although some families are common to both studies. 
We also present data regarding preprocessor directives occurrence, 
but we focus on the number of functions which contain such direc- 
tives. Besides, the feature dependencies we analyze do not relate to 
their concept of macro dependence. While they basically count the 
number of lines of code depending on a macro, we go beyond by 
taking into account the sharing of a variable across different fea- 
tures. 

Liebig et al. [6] analyzed 40 product families implemented 
in C to gather information regarding feature code scattering 
and tangling in the use of preprocessor directives. Later, Liebig 
et al. [11] analyzed the discipline of preprocessor annotations in 
those families. In both studies they developed a tool using srcML 
to perform their analysis. Likewise, in our study we also analyze 
40 product families, although not exactly the same families. How- 
ever, we focus on the analysis of the feature dependencies in such 
families. 

Hunsen et al. [39] performed a study to understand how the C 
preprocessor is used in open-source and industrial systems. Their 
study answers questions regarding general use and size of cpp - 
annotated code, and the scattering, tangling, and nesting of pre- 
processor directives. They analyzed 33 software families, including 
open-source and proprietary software, relying on srcML to generate 
ASTs from source code. In our work we do not focus on understand 
how developers use cpp . Instead, we aim to understand feature de- 
pendency occurrence. 

Similary, Queiroz et al. [40] conducted an analysis of 20 well- 
known C preprocessor-based systems from different domains, gath- 
ering statistics regarding scattering, tangling, and nesting depth of 
preprocessor annotations. We do not consider such statistics in our 
work, since we focus on feature dependencies. 
8. Concluding remarks 

This work presents an empirical study to better understand the 
occurrence of fine-grained feature dependencies in C program fam- 
ilies. 

Firstly, we present three scenarios to illustrate that different 
types of feature dependency might cause problems. 

Then, we perform an empirical study of 40 C software fami- 
lies to answer our research questions. Our results show that fea- 
ture dependencies are fairly common in the families we analyze, 
except for global dependencies. We detect intraprocedural depen- 
dencies in 51.44% ± 17.77% of the functions containing preproces- 
sor directives. We discovered global dependencies in only 12.14% ±
10.46% of the functions which use global variables. Despite being 
more problematic, this type of dependency is less common. Re- 
garding interprocedural dependencies, we find them in 25.98% ±
19.99% of the functions. This data is concerning, since interproce- 
dural dependencies are at least as problematic as global depen- 
dencies, as both can spread through different files, being easier 
to miss them. Our results show that the most common depen- 
dency direction is mandatory-to-optional, occurring in 54.47% ±
31.08% of all dependencies. This means that developers are more 
likely to face a dependency when maintaining mandatory code. 
We also find that the dependency depth distribution for interpro- 
cedural dependencies varies considerably, depending on the family 
we analyze. In our results, the median interprocedural dependency 
depth is 9, meaning that functions could share data of a variable 
9 times, over different functions, until its value reaches a depen- 
dency. When a bug involves such a deep interprocedural depen- 
dency, it might become harder to track and fix. Finally, we con- 
firm previous work [8] results on intraprocedural feature depen- 
dencies, since they are present in most of the functions contain- 
ing preprocessor directives, although in this work we present more 
precise results. Furthermore, we conclude that TypeChef is a more 
appropriate tool to deal with software families containing non- 
disciplined annotations, compared to srcML . This empirical study 
presents results that complement previous work on feature depen- 
dencies, and may be helpful for developers to understand how dif- 
ferent types of dependencies occur in practice. Furthermore, our 
study can possibly guide the implementation of tools and tech- 
niques to assist the developer to prevent problems maintaining 
software families in the presence of feature dependencies. 
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Appendix 

Table A.1 
Intraprocedural dependencies in the program families. Notice that for most families (25 out of 40), at least 
half of functions with preprocessor directives also contain intraprocedural dependencies. 

Family Version Application domain FDi FIntra FIntra/FDi NoF 
apache 2 .4.3 Web server 7 .57% 3 .58% 47 .30% 3910 
atlantis 0 .0.2.1 Operating system 4 .27% 1 .71% 40 .00% 117 
bash 2 .01 Command language interpreter 13 .42% 5 .89% 43 .89% 1647 
bc 1 .03 Calculator 2 .41% 0 .60% 25 .00% 166 
berkeley db 4 .7.25 Database system 11 .01% 7 .87% 71 .47% 3468 
bison 2 .0 Parser generator 2 .19% 1 .17% 53 .33% 684 
cherokee 1 .2.101 Web server 8 .11% 3 .97% 48 .99% 1838 
clamav 0 .97.6 Antivirus 13 .37% 7 .05% 52 .71% 2072 
cvs 1 .11.21 Revision control system 7 .66% 4 .46% 58 .14% 1122 
dia 0 .96.1 Diagramming software 2 .33% 1 .72% 73 .68% 814 
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Table A.1 ( continued ) 

Family Version Application domain FDi FIntra FIntra/FDi NoF 
expat 2 .1.0 XML library 5 .71% 1 .66% 29 .03% 543 
flex 2 .5.35 Lexical analyzer 6 .14% 1 .44% 23 .53% 277 
fvwm 2 .4.15 Window manager 6 .45% 3 .27% 50 .72% 2141 
gawk 3 .1.4 GAWK interpreter 12 .21% 6 .58% 53 .85% 745 
gnuchess 5 .06 Chess engine 1 .84% 0 .92% 50 .00% 217 
gnuplot 4 .6.1 Plotting tool 12 .84% 6 .23% 48 .54% 1861 
gzip 1 .2.4 File compressor 21 .93% 13 .16% 60 .00% 114 
irssi 0 .8.15 IRC client 2 .17% 0 .53% 24 .19% 2853 
kin 0 .5 Database system 6 .01% 3 .85% 64 .00% 1248 
libdsmcc 0 .6 DVB library 2 .00% 1 .00% 50 .00% 100 
libieee 0 .2.11 IEEE standards for VHDL library 12 .18% 2 .54% 20 .83% 197 
libpng 1 .0.60 PNG library 27 .31% 13 .87% 50 .77% 476 
libsoup 2 .41.1 HTTP library 1 .36% 0 .61% 45 .00% 1475 
libssh 0 .5.3 SSH library 10 .82% 5 .51% 50 .98% 943 
libxml2 2 .9.0 XML library 23 .91% 17 .04% 71 .26% 6009 
lighttpd 1 .4.30 Web server 16 .73% 10 .56% 63 .10% 1004 
lua 5 .2.1 Programming language 0 .12% 0 .12% 100 .00% 837 
lynx 2 .8.7 Web browser 29 .07% 15 .47% 53 .21% 1448 
m4 1 .4.4 Macro expander 9 .72% 4 .63% 47 .62% 216 
mpsolve 2 .2 Mathematical software 1 .95% 0 .00% 0 .00% 411 
mptris 1 .9 Game 17 .17% 14 .14% 82 .35% 99 
prc-tools 2 .3 C/C++ library for palm OS 3 .52% 2 .71% 76 .92% 369 
privoxy 3 .0.19 Proxy server 21 .55% 14 .02% 65 .05% 478 
rcs 5 .7 Revision control system 2 .34% 1 .00% 42 .86% 299 
sendmail 8 .14.6 Mail transfer agent 7 .67% 3 .72% 48 .48% 861 
sqlite 3 .7.15.3 Database system 16 .85% 8 .81% 52 .27% 2612 
sylpheed 3 .3.0 E-mail client 3 .50% 1 .85% 52 .75% 2597 
vim 7 .3 Text editor 37 .25% 18 .77% 50 .38% 5600 
xfig 3 .2.3 Vector graphics editor 2 .96% 1 .60% 54 .00% 1689 
xterm 2 .9.1 Terminal emulator 8 .09% 4 .95% 61 .25% 989 

FDi : % of functions with preprocessor directives; FIntra : % of functions with intraprocedural dependen- 
cies; NoF : Number of functions. 

Table A.2 
Global dependencies in the program families. Despite not so common in general, this type of dependency hap- 
pens quite often in few families, such as Vim and libxml2 . 

Family Version Application domain FGRef FGlobal FGlobal/FGRef NoF 
apache 2 .4.3 Web server 30 .74% 1 .30% 4 .24% 3910 
atlantis 0 .0.2.1 Operating system 17 .95% 0 .00% 0 .00% 117 
bash 2 .01 Command language interpreter 51 .00% 7 .65% 15 .00% 1647 
bc 1 .03 Calculator 27 .11% 0 .00% 0 .00% 166 
berkeley db 4 .7.25 Database system 8 .39% 0 .95% 11 .34% 3468 
bison 2 .0 Parser generator 35 .38% 0 .73% 2 .07% 684 
cherokee 1 .2.101 Web server 5 .98% 1 .52% 25 .45% 1838 
clamav 0 .97.6 Antivirus 15 .93% 1 .64% 10 .30% 2072 
cvs 1 .11.21 Revision control system 30 .30% 2 .23% 7 .35% 1122 
dia 0 .96.1 Diagramming software 26 .54% 0 .37% 1 .39% 814 
expat 2 .1.0 XML library 23 .57% 0 .00% 0 .00% 543 
flex 2 .5.35 Lexical analyzer 23 .83% 1 .44% 6 .06% 277 
fvwm 2 .4.15 Window manager 44 .14% 2 .29% 5 .19% 2141 
gawk 3 .1.4 GAWK interpreter 30 .60% 2 .95% 9 .65% 745 
gnuchess 5 .06 Chess engine 35 .94% 0 .92% 2 .56% 217 
gnuplot 4 .6.1 Plotting tool 41 .97% 6 .45% 15 .36% 1861 
gzip 1 .2.4 File compressor 68 .42% 9 .65% 14 .10% 114 
irssi 0 .8.15 IRC client 26 .95% 0 .21% 0 .78% 2853 
kin 0 .5 Database system 26 .84% 1 .60% 5 .97% 1248 
libdsmcc 0 .6 DVB library 5 .00% 2 .00% 40 .00% 100 
libieee 0 .2.11 IEEE standards for VHDL library 26 .90% 1 .52% 5 .66% 197 
libpng 1 .0.60 PNG library 11 .34% 2 .73% 24 .07% 476 
libsoup 2 .41.1 HTTP library 12 .47% 0 .00% 0 .00% 1475 
libssh 0 .5.3 SSH library 8 .38% 1 .17% 13 .92% 943 
libxml2 2 .9.0 XML library 37 .11% 15 .14% 40 .81% 6009 
lighttpd 1 .4.30 Web server 12 .55% 1 .00% 7 .94% 1004 

( continued on next page ) 



I. Rodrigues et al. / Information and Software Technology 78 (2016) 27–52 49 
Table A.2 ( continued ) 

Family Version Application domain FGRef FGlobal FGlobal/FGRef NoF 
lua 5 .2.1 Programming language 4 .06% 0 .00% 0 .00% 837 
lynx 2 .8.7 Web browser 37 .22% 10 .70% 28 .76% 1448 
m4 1 .4.4 Macro expander 38 .43% 6 .48% 16 .87% 216 
mpsolve 2 .2 Mathematical software 10 .46% 1 .46% 13 .95% 411 
mptris 1 .9 Game 19 .19% 8 .08% 42 .11% 99 
prc-tools 2 .3 C/C++ library for palm OS 43 .36% 0 .81% 1 .88% 369 
privoxy 3 .0.19 Proxy server 22 .38% 4 .81% 21 .50% 478 
rcs 5 .7 Revision control system 40 .80% 1 .00% 2 .46% 299 
sendmail 8 .14.6 Mail transfer agent 31 .24% 1 .97% 6 .32% 861 
sqlite 3 .7.15.3 Database system 20 .06% 3 .25% 16 .22% 2612 
sylpheed 3 .3.0 E-mail client 28 .30% 1 .04% 3 .67% 2597 
vim 7 .3 Text editor 38 .57% 15 .89% 41 .20% 5600 
xfig 3 .2.3 Vector graphics editor 52 .40% 1 .12% 2 .15% 1689 
xterm 2 .9.1 Terminal emulator 17 .80% 1 .72% 9 .66% 989 

FGRef : % of functions referencing global variables; FGlobal : % of functions with global dependencies; 
NoF : Number of functions. 

Table A.3 
Interprocedural dependencies in the program families. This type of dependency has the greatest variation 
among families. 

Family Version Application domain FM FI FInter NoF 
apache 2 .4.3 Web server 6 .14% 5 .01% 9 .87% 3910 
atlantis 0 .0.2.1 Operating system 2 .56% 0 .85% 2 .56% 117 
bash 2 .01 Command language interpreter 37 .58% 19 .98% 47 .78% 1647 
bc 1 .03 Calculator 10 .84% 6 .02% 15 .06% 166 
berkeley db 4 .7.25 Database system 55 .82% 18 .54% 62 .72% 3468 
bison 2 .0 Parser generator 2 .92% 6 .58% 8 .48% 684 
cherokee 1 .2.101 Web server 12 .62% 9 .85% 18 .61% 1838 
clamav 0 .97.6 Antivirus 17 .18% 11 .00% 23 .65% 2072 
cvs 1 .11.21 Revision control system 18 .81% 14 .35% 28 .43% 1122 
dia 0 .96.1 Diagramming software 2 .33% 1 .97% 4 .05% 814 
expat 2 .1.0 XML library 3 .68% 1 .84% 5 .52% 543 
flex 2 .5.35 Lexical analyzer 1 .08% 11 .19% 12 .27% 277 
fvwm 2 .4.15 Window manager 9 .29% 6 .45% 14 .20% 2141 
gawk 3 .1.4 GAWK interpreter 16 .91% 8 .86% 23 .49% 745 
gnuchess 5 .06 Chess engine 20 .28% 4 .61% 23 .96% 217 
gnuplot 4 .6.1 Plotting tool 31 .22% 13 .70% 40 .03% 1861 
gzip 1 .2.4 File compressor 24 .56% 15 .79% 35 .96% 114 
irssi 0 .8.15 IRC client 2 .28% 1 .68% 3 .72% 2853 
kin 0 .5 Database system 32 .29% 5 .69% 36 .38% 1248 
libdsmcc 0 .6 DVB library 13 .00% 15 .00% 22 .00% 100 
libieee 0 .2.11 IEEE standards for VHDL library 8 .63% 7 .61% 12 .69% 197 
libpng 1 .0.60 PNG library 40 .97% 42 .65% 59 .66% 476 
libsoup 2 .41.1 HTTP library 0 .61% 0 .41% 1 .02% 1475 
libssh 0 .5.3 SSH library 35 .63% 23 .97% 50 .69% 943 
libxml2 2 .9.0 XML library 44 .02% 15 .74% 52 .89% 6009 
lighttpd 1 .4.30 Web server 25 .70% 20 .22% 37 .35% 1004 
lua 5 .2.1 Programming language 0 .12% 0 .12% 0 .24% 837 
lynx 2 .8.7 Web browser 28 .04% 24 .31% 42 .33% 1448 
m4 1 .4.4 Macro expander 11 .11% 9 .72% 18 .98% 216 
mpsolve 2 .2 Mathematical software 0 .97% 1 .46% 2 .43% 411 
mptris 1 .9 Game 27 .27% 27 .27% 41 .41% 99 
prc-tools 2 .3 C/C++ library for palm OS 12 .20% 5 .42% 17 .34% 369 
privoxy 3 .0.19 Proxy server 56 .69% 24 .69% 66 .74% 478 
rcs 5 .7 Revision control system 6 .35% 6 .69% 12 .04% 299 
sendmail 8 .14.6 Mail transfer agent 21 .95% 8 .48% 26 .71% 861 
sqlite 3 .7.15.3 Database system 44 .83% 32 .20% 59 .49% 2612 
sylpheed 3 .3.0 E-mail client 4 .74% 3 .62% 7 .78% 2597 
vim 7 .3 Text editor 52 .38% 39 .88% 67 .34% 5600 
xfig 3 .2.3 Vector graphics editor 5 .45% 3 .02% 7 .58% 1689 
xterm 2 .9.1 Terminal emulator 9 .50% 9 .10% 15 .77% 989 

FM : % of functions with maintenance points regarding interprocedural dependencies; FI : % of functions 
with impact points regarding interprocedural dependencies; FInter : % of functions with interprocedural 
dependencies (that is, containing either maintenance or impact points); NoF : Number of functions. 

Table A.4 
Interprocedural dependency depths in the program families. Notice that val- 
ues for Lua are only a lower bound. 

Family Version Application domain Max. Avg. St. Dev. 
apache 2 .4.3 Web server 7 2 .48 1 .42 
atlantis 0 .0.2.1 Operating system 3 1 .49 0 .60 
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Table A.4 ( continued ) 

Family Version Application domain Max. Avg. St. Dev. 
bash 2 .01 Command language interpreter 13 4 .14 2 .78 
bc 1 .03 Calculator 1 1 .00 0 .00 
berkeley db 4 .7.25 Database system 23 7 .29 3 .72 
bison 2 .0 Parser generator 5 1 .10 0 .37 
cherokee 1 .2.101 Web server 7 1 .56 0 .83 
clamav 0 .97.6 Antivirus 12 5 .51 2 .37 
cvs 1 .11.21 Revision control system 8 2 .32 1 .38 
dia 0 .96.1 Diagramming software 2 1 .26 0 .44 
expat 2 .1.0 XML library 6 3 .13 1 .45 
flex 2 .5.35 Lexical analyzer 1 1 .00 0 .00 
fvwm 2 .4.15 Window manager 7 2 .34 1 .35 
gawk 3 .1.4 GAWK interpreter 9 3 .09 1 .68 
gnuchess 5 .06 Chess engine 4 1 .28 0 .49 
gnuplot 4 .6.1 Plotting tool 9 1 .57 0 .87 
gzip 1 .2.4 File compressor 3 1 .41 0 .64 
irssi 0 .8.15 IRC client 9 1 .87 1 .59 
kin 0 .5 Database system 7 2 .10 1 .34 
libdsmcc 0 .6 DVB library 5 1 .38 0 .76 
libieee 0 .2.11 IEEE standards for VHDL library 3 1 .73 0 .83 
libpng 1 .0.60 PNG library 9 3 .06 1 .44 
libsoup 2 .41.1 HTTP library 3 1 .29 0 .64 
libssh 0 .5.3 SSH library 13 4 .30 2 .78 
libxml2 2 .9.0 XML library 23 11 .03 3 .32 
lighttpd 1 .4.30 Web server 8 2 .94 1 .57 
lua 5 .2.1 Programming language 29 23 .40 11 .20 
lynx 2 .8.7 Web browser 11 4 .44 1 .83 
m4 1 .4.4 Macro expander 4 1 .31 0 .64 
mpsolve 2 .2 Mathematical software 1 1 .00 0 .00 
mptris 1 .9 Game 4 1 .41 0 .68 
prc-tools 2 .3 C/C++ library for palm OS 4 1 .60 0 .75 
privoxy 3 .0.19 Proxy server 6 2 .05 0 .94 
rcs 5 .7 Revision control system 3 1 .40 0 .73 
sendmail 8 .14.6 Mail transfer agent 10 4 .83 2 .54 
sqlite 3 .7.15.3 Database system 19 7 .34 2 .94 
sylpheed 3 .3.0 E-mail client 4 1 .48 0 .59 
vim 7 .3 Text editor 14 4 .01 3 .04 
xfig 3 .2.3 Vector graphics editor 8 2 .48 1 .45 
xterm 2 .9.1 Terminal emulator 22 11 .11 3 .16 

Table A.5 
Successful AST generation rate in the program families. Most of the families are completely 
parsed. 

Family Version Application domain Successful AST generation rate 
apache 2 .4.3 Web server 98 .81% 
atlantis 0 .0.2.1 Operating system 97 .78% 
bash 2 .01 Command language interpreter 100 .00% 
bc 1 .03 Calculator 100 .00% 
berkeley db 4 .7.25 Database system 99 .78% 
bison 2 .0 Parser generator 100 .00% 
cherokee 1 .2.101 Web server 96 .55% 
clamav 0 .97.6 Antivirus 96 .15% 
cvs 1 .11.21 Revision control system 84 .85% 
dia 0 .96.1 Diagramming software 93 .85% 
expat 2 .1.0 XML library 100 .00% 
flex 2 .5.35 Lexical analyzer 100 .00% 
fvwm 2 .4.15 Window manager 100 .00% 
gawk 3 .1.4 GAWK interpreter 100 .00% 
gnuchess 5 .06 Chess engine 100 .00% 
gnuplot 4 .6.1 Plotting tool 98 .57% 
gzip 1 .2.4 File compressor 100 .00% 
irssi 0 .8.15 IRC client 100 .00% 
kin 0 .5 Database system 100 .00% 
libdsmcc 0 .6 DVB library 100 .00% 
libieee 0 .2.11 IEEE standards for VHDL library 100 .00% 
libpng 1 .0.60 PNG library 100 .00% 
libsoup 2 .41.1 HTTP library 86 .41% 
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Table A.5 ( continued ) 

Family Version Application domain Successful AST generation rate 
libssh 0 .5.3 SSH library 98 .86% 
libxml2 2 .9.0 XML library 93 .62% 
lighttpd 1 .4.30 Web server 98 .89% 
lua 5 .2.1 Programming language 100 .00% 
lynx 2 .8.7 Web browser 96 .49% 
m4 1 .4.4 Macro expander 100 .00% 
mpsolve 2 .2 Mathematical software 100 .00% 
mptris 1 .9 Game 100 .00% 
prc-tools 2 .3 C/C++ library for palm OS 100 .00% 
privoxy 3 .0.19 Proxy server 100 .00% 
rcs 5 .7 Revision control system 100 .00% 
sendmail 8 .14.6 Mail transfer agent 99 .41% 
sqlite 3 .7.15.3 Database system 98 .28% 
sylpheed 3 .3.0 E-mail client 98 .90% 
vim 7 .3 Text editor 93 .33% 
xfig 3 .2.3 Vector graphics editor 100 .00% 
xterm 2 .9.1 Terminal emulator 100 .00% 
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